×

Center problem for systems with two monomial nonlinearities. (English) Zbl 1388.34024

The authors study the center problem for a planar real system which is written in the complex form as \[ \dot z=i z + A z^k \bar z^\ell+B z ^m \bar z^n \] with \(k+\ell \leq m+n, \;(k,\ell)\neq (m,n), \;A, B\in \mathbb{C}\). In the equation \(z(t)\) is \(u(t)+i v(t)\), so the phase plane is the real plane \((u,v)\). In the first theorem of the paper five series of conditions are given, the fulfillment of which yields the existence of a center at the origin of the coordinates. Then, it is proved that under some restrictions the conditions of the theorem are not only sufficient, but also necessary center conditions.

MSC:

34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
34C14 Symmetries, invariants of ordinary differential equations
Full Text: DOI

References:

[1] A. A. Andronov, <em>Theory of Bifurcations of Dynamic Systems on a Plane</em>,, Halsted Press [A division of John Wiley & Sons] (1973)
[2] J. Bai, A class of planar degree \(n\) (even number) polynomial systems with a fine focus of order \(n^2-n\),, Chinese Sci. Bull., 12, 1063 (1992)
[3] A. Cima, Algebraic properties of the Liapunov and period constants,, Rocky Mountain J. Math., 27, 471 (1997) · Zbl 0911.34025 · doi:10.1216/rmjm/1181071923
[4] A. Cima, On persistent centers,, Bull. Sci. Math., 133, 644 (2009) · Zbl 1183.34041 · doi:10.1016/j.bulsci.2008.08.007
[5] J. Devlin, Word problems related to derivatives of the displacement map,, Math. Proc. Cambridge Philos. Soc., 110, 569 (1991) · Zbl 0744.34032 · doi:10.1017/S0305004100070638
[6] F. Dumortier, <em>Qualitative Theory of Planar Differential Systems</em>,, Universitext (2006) · Zbl 1110.34002
[7] J.-P. Fran\ccoise, Successive derivatives of a first return map, application to the study of quadratic vector fields,, Ergodic Theory Dynam. Systems, 16, 87 (1996) · Zbl 0852.34008 · doi:10.1017/S0143385700008725
[8] A. Garijo, Normal forms for singularities of one dimensional holomorphic vector fields,, Electron. J. Differential Equations, 2004 · Zbl 1075.34089
[9] A. Gasull, An explicit expression of the first Liapunov and period constants with applications,, J. Math. Anal. Appl., 211, 190 (1997) · Zbl 0882.34040 · doi:10.1006/jmaa.1997.5455
[10] A. Gasull, A new approach to the computation of the Lyapunov constants,, Comput. Appl. Math., 20, 149 (2001) · Zbl 1127.34318
[11] J. Gin\'e, The center problem for a linear center perturbed by homogeneous polynomials,, Acta Math. Sin. (Engl. Ser.), 22, 1613 (2006) · Zbl 1124.34326 · doi:10.1007/s10114-005-0623-4
[12] J. Gin\'e, On the Poincaré-Lyapunov constants and the Poincaré series,, Appl. Math. (Warsaw), 28, 17 (2001) · Zbl 1022.34028 · doi:10.4064/am28-1-2
[13] J. Gin\'e, Implementation of a new algorithm of computation of the Poincaré-Liapunov constants,, J. Comput. Appl. Math., 166, 465 (2004) · Zbl 1051.65125 · doi:10.1016/j.cam.2003.08.043
[14] Y. R. Liu, Theory of values of singular point in complex autonomous differential systems,, Sci. China Ser. A, 33, 10 (1990) · Zbl 0686.34027
[15] J. Llibre, Integrability of polynomial differential systems,, in Handbook of Differential Equations (Ordinary Differential Equations Volume I), 437 (2004) · Zbl 1088.34022
[16] J. Llibre, Planar real polynomial differential systems of degree \(n>3\) having a weak focus of high order,, Rocky Mountain J. Math., 42, 657 (2012) · Zbl 1254.34048 · doi:10.1216/RMJ-2012-42-2-657
[17] J. Llibre, Centers for polynomial vector fields of arbitrary degree,, Commun. Pure Appl. Anal., 8, 725 (2009) · Zbl 1172.34023 · doi:10.3934/cpaa.2009.8.725
[18] N. G. Lloyd, Computing integrability conditions for a cubic differential system,, Comput. Math. Appl., 32, 99 (1996) · Zbl 0871.34003 · doi:10.1016/S0898-1221(96)00188-5
[19] A. M. Lyapunov, The general problem of the stability of motion,, Taylor & Francis, 5 (1907) · doi:10.1080/00207179208934253
[20] J. M. Pearson, Algorithmic derivation of centre conditions,, SIAM Rev., 38, 619 (1996) · Zbl 0876.34033 · doi:10.1137/S0036144595283575
[21] H. Poincar\'e, Sur l’intégration des équations différentielles du premier ordre et du premier degré I,, Rend. Circ. Mat. Palermo, 5, 161 (1891) · JFM 23.0319.01
[22] H. Poincar\'e, Sur l’intégration des équations différentielles du premier ordre et du premier degré {II},, Rend. Circ. Mat. Palermo, 11, 193 (1897) · JFM 28.0292.01
[23] Y. Qiu, On the focus order of planar polynomial differential equations,, J. Differential Equations, 246, 3361 (2009) · Zbl 1170.34019 · doi:10.1016/j.jde.2009.02.005
[24] V. G. Romanovski{\u\i}, Center conditions for a cubic system with four complex parameters,, Differentsial\cprime nye Uravneniya, 31, 1091 (1995) · Zbl 0861.34013
[25] V. G. Romanovski{\u\i}, <em>The Center and Cyclicity Problems: A Computational Algebra Approach</em>,, Birkh(2009) · Zbl 1192.34003 · doi:10.1007/978-0-8176-4727-8
[26] S. L. Shi, A method of constructing cycles without contact around a weak focus,, J. Differential Equations, 41, 301 (1981) · Zbl 0442.34029 · doi:10.1016/0022-0396(81)90039-5
[27] H. {. Z}o{\l}adek, Quadratic systems with center and their perturbations,, J. Differential Equations, 109, 223 (1994) · Zbl 0797.34044 · doi:10.1006/jdeq.1994.1049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.