×

Exploring Euclidean dynamical triangulations with a non-trivial measure term. (English) Zbl 1388.83064

Summary: We investigate a nonperturbative formulation of quantum gravity defined via Euclidean dynamical triangulations (EDT) with a non-trivial measure term in the path integral. We are motivated to revisit this older formulation of dynamical triangulations by hints from renormalization group approaches that gravity may be asymptotically safe and by the emergence of a semiclassical phase in causal dynamical triangulations (CDT).We study the phase diagram of this model and identify the two phases that are well known from previous work: the branched polymer phase and the collapsed phase. We verify that the order of the phase transition dividing the branched polymer phase from the collapsed phase is almost certainly first-order. The nontrivial measure term enlarges the phase diagram, allowing us to explore a region of the phase diagram that has been dubbed the crinkled region. Although the collapsed and branched polymer phases have been studied extensively in the literature, the crinkled region has not received the same scrutiny. We find that the crinkled region is likely a part of the collapsed phase with particularly large finite-size effects. Intriguingly, the behavior of the spectral dimension in the crinkled region at small volumes is similar to that of CDT, as first reported in [the authors, “Evidence for asymptotic safety from lattice quantum gravity”, Phys. Rev. Lett. 107, No. 16, Article ID 161301, 4 p. (2011; doi:10.1103/PhysRevLett.107.161301)], but for sufficiently large volumes the crinkled region does not appear to have 4-dimensional semiclassical features. Thus, we find that the crinkled region of the EDT formulation does not share the good features of the extended phase of CDT, as we first suggested in [loc. cit.]. This agrees with the recent results of J. Ambjørn et al. [J. High Energy Phys. 2013, No. 10, Paper No. 100, 23 p. (2013; Zbl 1342.83052)], in which the authors used a somewhat different discretization of EDT from the one presented here.

MSC:

83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
83C45 Quantization of the gravitational field

Citations:

Zbl 1342.83052

References:

[1] J. Donoghue, Perturbative dynamics of quantum general relativity, gr-qc/9712070 [INSPIRE]. · Zbl 0963.83018
[2] G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Annales Poincaré Phys. Theor.A 20 (1974) 69 [INSPIRE]. · Zbl 1422.83019
[3] M.H. Goroff and A. Sagnotti, The ultraviolet behavior of Einstein gravity, Nucl. Phys.B 266 (1986) 709 [INSPIRE]. · doi:10.1016/0550-3213(86)90193-8
[4] S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, in General relativity, an Einstein centenary survey, chapter 16, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1979), pg. 790 [INSPIRE]. · Zbl 0424.53001
[5] Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev.D 86 (2012) 010001 [INSPIRE].
[6] G. Colangelo et al., Review of lattice results concerning low energy particle physics, Eur. Phys. J.C 71 (2011) 1695 [arXiv:1011.4408] [INSPIRE]. · doi:10.1140/epjc/s10052-011-1695-1
[7] M. Reuter and F. Saueressig, Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation, Phys. Rev.D 65 (2002) 065016 [hep-th/0110054] [INSPIRE].
[8] O. Lauscher and M. Reuter, Ultraviolet fixed point and generalized flow equation of quantum gravity, Phys. Rev.D 65 (2002) 025013 [hep-th/0108040] [INSPIRE].
[9] D.F. Litim, Fixed points of quantum gravity, Phys. Rev. Lett.92 (2004) 201301 [hep-th/0312114] [INSPIRE]. · Zbl 1267.83040 · doi:10.1103/PhysRevLett.92.201301
[10] A. Codello, R. Percacci and C. Rahmede, Ultraviolet properties of f(R)-gravity, Int. J. Mod. Phys.A 23 (2008) 143 [arXiv:0705.1769] [INSPIRE]. · doi:10.1142/S0217751X08038135
[11] A. Codello, R. Percacci and C. Rahmede, Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation, Annals Phys.324 (2009) 414 [arXiv:0805.2909] [INSPIRE]. · Zbl 1161.83343 · doi:10.1016/j.aop.2008.08.008
[12] D. Benedetti, P.F. Machado and F. Saueressig, Asymptotic safety in higher-derivative gravity, Mod. Phys. Lett.A 24 (2009) 2233 [arXiv:0901.2984] [INSPIRE]. · Zbl 1175.83030 · doi:10.1142/S0217732309031521
[13] J. Ambjørn, J. Jurkiewicz and R. Loll, Reconstructing the universe, Phys. Rev.D 72 (2005) 064014 [hep-th/0505154] [INSPIRE].
[14] J. Ambjørn and R. Loll, Nonperturbative Lorentzian quantum gravity, causality and topology change, Nucl. Phys.B 536 (1998) 407 [hep-th/9805108] [INSPIRE]. · Zbl 0940.83004 · doi:10.1016/S0550-3213(98)00692-0
[15] J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, The nonperturbative quantum de Sitter universe, Phys. Rev.D 78 (2008) 063544 [arXiv:0807.4481] [INSPIRE].
[16] J. Ambjørn and J. Jurkiewicz, Four-dimensional simplicial quantum gravity, Phys. Lett.B 278 (1992) 42 [INSPIRE]. · doi:10.1016/0370-2693(92)90709-D
[17] M.E. Agishtein and A.A. Migdal, Simulations of four-dimensional simplicial quantum gravity, Mod. Phys. Lett.A 7 (1992) 1039 [INSPIRE]. · Zbl 1020.83534 · doi:10.1142/S0217732392000938
[18] S. Catterall, J.B. Kogut and R. Renken, Phase structure of four-dimensional simplicial quantum gravity, Phys. Lett.B 328 (1994) 277 [hep-lat/9401026] [INSPIRE]. · doi:10.1016/0370-2693(94)91480-X
[19] J. Ambjørn and J. Jurkiewicz, Scaling in four-dimensional quantum gravity, Nucl. Phys.B 451 (1995) 643 [hep-th/9503006] [INSPIRE]. · Zbl 0925.83005 · doi:10.1016/0550-3213(95)00303-A
[20] P. Bialas, Z. Burda, A. Krzywicki and B. Petersson, Focusing on the fixed point of 4D simplicial gravity, Nucl. Phys.B 472 (1996) 293 [hep-lat/9601024] [INSPIRE]. · doi:10.1016/0550-3213(96)00214-3
[21] B.V. de Bakker, Further evidence that the transition of 4D dynamical triangulation is first order, Phys. Lett.B 389 (1996) 238 [hep-lat/9603024] [INSPIRE]. · doi:10.1016/S0370-2693(96)01277-4
[22] T. Rindlisbacher and P. de Forcrand, Euclidean dynamical triangulation revisited: is the phase transition really first order?, arXiv:1311.4712 [INSPIRE]. · Zbl 1388.83142
[23] F. Markopoulou and L. Smolin, Gauge fixing in causal dynamical triangulations, Nucl. Phys.B 739 (2006) 120 [hep-th/0409057] [INSPIRE]. · Zbl 1109.83303 · doi:10.1016/j.nuclphysb.2006.01.009
[24] S. Jordan and R. Loll, De Sitter universe from causal dynamical triangulations without preferred foliation, Phys. Rev.D 88 (2013) 044055 [arXiv:1307.5469] [INSPIRE]. · Zbl 1331.83064
[25] B. Bruegmann and E. Marinari, 4D simplicial quantum gravity with a nontrivial measure, Phys. Rev. Lett.70 (1993) 1908 [hep-lat/9210002] [INSPIRE]. · Zbl 1051.83506 · doi:10.1103/PhysRevLett.70.1908
[26] S. Bilke et al., 4D simplicial quantum gravity: matter fields and the corresponding effective action, Phys. Lett.B 432 (1998) 279 [hep-lat/9804011] [INSPIRE]. · doi:10.1016/S0370-2693(98)00675-3
[27] J. Laiho and D. Coumbe, Evidence for asymptotic safety from lattice quantum gravity, Phys. Rev. Lett.107 (2011) 161301 [arXiv:1104.5505] [INSPIRE]. · doi:10.1103/PhysRevLett.107.161301
[28] J. Laiho and D. Coumbe, Asymptotic safety and lattice quantum gravity, PoS(LATTICE2011)005 [INSPIRE].
[29] D. Coumbe and J. Laiho, Exploring the phase diagram of lattice quantum gravity, PoS(LATTICE 2011)334 [arXiv:1201.2864] [INSPIRE]. · Zbl 1388.83064
[30] G. Thorleifsson, P. Bialas and B. Petersson, The weak coupling limit of simplicial quantum gravity, Nucl. Phys.B 550 (1999) 465 [hep-lat/9812022] [INSPIRE]. · Zbl 0949.83016 · doi:10.1016/S0550-3213(99)00140-6
[31] J. Ambjørn, L. Glaser, A. Görlich and J. Jurkiewicz, Euclidian 4D quantum gravity with a non-trivial measure term, JHEP10 (2013) 100 [arXiv:1307.2270] [INSPIRE]. · Zbl 1342.83052 · doi:10.1007/JHEP10(2013)100
[32] J. Ambjørn, S. Jordan, J. Jurkiewicz and R. Loll, A second-order phase transition in CDT, Phys. Rev. Lett.107 (2011) 211303 [arXiv:1108.3932] [INSPIRE]. · doi:10.1103/PhysRevLett.107.211303
[33] J. Ambjørn, Strings, quantum gravity and noncommutative geometry on the lattice, Nucl. Phys. Proc. Suppl.106 (2002) 62 [hep-lat/0201012] [INSPIRE]. · Zbl 1058.81613 · doi:10.1016/S0920-5632(01)01644-9
[34] J. Ambjørn and S. Varsted, Three-dimensional simplicial quantum gravity, Nucl. Phys.B 373 (1992) 557 [INSPIRE]. · doi:10.1016/0550-3213(92)90444-G
[35] M.E. Agishtein and A.A. Migdal, Three-dimensional quantum gravity as dynamical triangulation, Mod. Phys. Lett.A 6 (1991) 1863 [Erratum ibid.A 6 (1991) 2555] [INSPIRE]. · Zbl 1020.83535
[36] D.V. Boulatov and A. Krzywicki, On the phase diagram of three-dimensional simplicial quantum gravity, Mod. Phys. Lett.A 6 (1991) 3005 [INSPIRE]. · Zbl 1020.83538 · doi:10.1142/S0217732391003511
[37] T. Regge, General relativity without coordinates, Nuovo Cim.19 (1961) 558 [INSPIRE]. · doi:10.1007/BF02733251
[38] S. Bilke and G. Thorleifsson, Simulating four-dimensional simplicial gravity using degenerate triangulations, Phys. Rev.D 59 (1999) 124008 [hep-lat/9810049] [INSPIRE]. · Zbl 1052.83505
[39] G. Thorleifsson, Three-dimensional simplicial gravity and degenerate triangulations, Nucl. Phys.B 538 (1999) 278 [hep-lat/9807026] [INSPIRE]. · Zbl 0940.83005 · doi:10.1016/S0550-3213(98)00679-8
[40] U. Pachner, P.l. homeomorphic manifolds are equivalent by elementary shellings, Eur. J. Comb.12 (1991) 129. · Zbl 0729.52003 · doi:10.1016/S0195-6698(13)80080-7
[41] J. Alexander, General relativity without coordinates, Ann. Math31 (1930) 292. · JFM 56.0497.02 · doi:10.2307/1968099
[42] B.V. de Bakker and J. Smit, Curvature and scaling in 4D dynamical triangulation, Nucl. Phys.B 439 (1995) 239 [hep-lat/9407014] [INSPIRE]. · doi:10.1016/0550-3213(95)00026-O
[43] B.V. De Bakker and J. Smit, Volume dependence of the phase boundary in 4D dynamical triangulation, Phys. Lett.B 334 (1994) 304 [hep-lat/9405013] [INSPIRE]. · doi:10.1016/0370-2693(94)90693-9
[44] J. Ambjørn, J. Jurkiewicz and R. Loll, Lorentzian and Euclidean quantum gravity — analytical and numerical results, NATO Sci. Ser. C556 (2000) 381 [hep-th/0001124] [INSPIRE]. · Zbl 0982.83002
[45] S. Catterall, J.B. Kogut, R. Renken and G. Thorleifsson, Baby universes in 4D dynamical triangulation, Phys. Lett.B 366 (1996) 72 [hep-lat/9509004] [INSPIRE]. · doi:10.1016/0370-2693(95)01372-5
[46] T. Jonsson and J.F. Wheater, The spectral dimension of the branched polymer phase of two-dimensional quantum gravity, Nucl. Phys.B 515 (1998) 549 [hep-lat/9710024] [INSPIRE]. · Zbl 0949.82017 · doi:10.1016/S0550-3213(98)00027-3
[47] J. Ambjørn, D. Boulatov, J.L. Nielsen, J. Rolf and Y. Watabiki, The spectral dimension of 2D quantum gravity, JHEP02 (1998) 010 [hep-th/9801099] [INSPIRE]. · Zbl 0955.83005 · doi:10.1088/1126-6708/1998/02/010
[48] S. Blundell and K. Blundell, Concepts in thermal physics, Oxford University Press, Oxford U.K. (2008).
[49] J. Smit, Continuum interpretation of the dynamical-triangulation formulation of quantum Einstein gravity, JHEP08 (2013) 016 [arXiv:1304.6339] [INSPIRE]. · Zbl 1342.83055 · doi:10.1007/JHEP08(2013)016
[50] M. Newman and G. Barkema, Monte Carlo methods in statistical physics, Oxford University Press, Oxford U.K. (1999). · Zbl 1012.82019
[51] H. Meyer-Ortmanns, Phase transitions in quantum chromodynamics, Rev. Mod. Phys.68 (1996) 473 [hep-lat/9608098] [INSPIRE]. · doi:10.1103/RevModPhys.68.473
[52] S. Warner, S. Catterall and R. Renken, Phase structure of 3D dynamical triangulations with a boundary, in Toward the theory of everything, MRST’98, Montreal Canada (1998), pg. 212 [INSPIRE].
[53] R.L. Renken, S.M. Catterall and J.B. Kogut, Phase structure of dynamical triangulation models in three-dimensions, Nucl. Phys.B 523 (1998) 553 [hep-lat/9712011] [INSPIRE]. · doi:10.1016/S0550-3213(98)00142-4
[54] J. Ambjørn, J. Jurkiewicz and R. Loll, Spectral dimension of the universe, Phys. Rev. Lett.95 (2005) 171301 [hep-th/0505113] [INSPIRE]. · doi:10.1103/PhysRevLett.95.171301
[55] M. Reuter and F. Saueressig, Fractal space-times under the microscope: a renormalization group view on Monte Carlo data, JHEP12 (2011) 012 [arXiv:1110.5224] [INSPIRE]. · Zbl 1306.83026 · doi:10.1007/JHEP12(2011)012
[56] S. Rechenberger and F. Saueressig, The R2phase-diagram of QEG and its spectral dimension, Phys. Rev.D 86 (2012) 024018 [arXiv:1206.0657] [INSPIRE].
[57] D.N. Coumbe and J. Jurkiewicz, Evidence for asymptotic safety from dimensional reduction in causal dynamical triangulations, JHEP03 (2015) 151 [arXiv:1411.7712] [INSPIRE]. · Zbl 1388.83099 · doi:10.1007/JHEP03(2015)151
[58] A. Shomer, A pedagogical explanation for the non-renormalizability of gravity, arXiv:0709.3555 [INSPIRE].
[59] T. Banks, TASI lectures on holographic space-time, SUSY and gravitational effective field theory, arXiv:1007.4001 [INSPIRE].
[60] R. Percacci and G.P. Vacca, Asymptotic safety, emergence and minimal length, Class. Quant. Grav.27 (2010) 245026 [arXiv:1008.3621] [INSPIRE]. · Zbl 1206.83081 · doi:10.1088/0264-9381/27/24/245026
[61] K. Falls and D.F. Litim, Black hole thermodynamics under the microscope, Phys. Rev.D 89 (2014) 084002 [arXiv:1212.1821] [INSPIRE].
[62] K.S. Stelle, Renormalization of higher derivative quantum gravity, Phys. Rev.D 16 (1977) 953 [INSPIRE].
[63] J. Ambjørn, J. Jurkiewicz and C.F. Kristjansen, Quantum gravity, dynamical triangulations and higher derivative regularization, Nucl. Phys.B 393 (1993) 601 [hep-th/9208032] [INSPIRE]. · Zbl 1245.83007 · doi:10.1016/0550-3213(93)90075-Z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.