×

Quantum gravity, dynamical triangulations and higher-derivative regularization. (English) Zbl 1245.83007

Summary: We consider a discrete model of euclidean quantum gravity in four dimensions based on a summation over random simplicial manifolds. The action used is the Einstein-Hilbert action plus an \(R^{2}\) term. The phase diagram as a function of the bare coupling constants is studied in the search for a sensible continuum limit. For small values of the coupling constant of the \(R^{2}\) term the model seems to belong to the same universality class as the model with pure Einstein-Hilbert action and exhibits the same phase transition. The order of the transition may be second or higher. The average curvature is positive at the phase transition, which makes it difficult to understand the possible scaling relations of the model.

MSC:

83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
81-04 Software, source code, etc. for problems pertaining to quantum theory
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
83-04 Software, source code, etc. for problems pertaining to relativity and gravitational theory
83C45 Quantization of the gravitational field

References:

[1] Gibbons, G.; Hawking, S.; Perry, M., Nucl. Phys., B138, 141 (1978)
[2] Greensite, J.; Halpern, M., Nucl. Phys., B242, 167 (1984)
[4] Weinberg, S., Ultraviolet divergences in quantum gravity, (Hawking, S. W.; Israel, W., General relativity, an Einstein centenary survey (1979), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0424.53001
[5] Ooguri, H., RIMS-851 (1991), to appear in Nucl. Phys. B
[7] Regge, T., Nuovo Cimento, 19, 558 (1961)
[8] Hamber, H., Nucl. Phys. B (Proc. Suppl.), 25A, 150 (1992) · Zbl 0957.81676
[10] Rocek, M.; Williams, R. M., Z. Phys., C21, 371 (1984)
[11] Gross, M.; Hamber, H., Nucl. Phys., B364, 703 (1991)
[12] David, F., Nucl. Phys. B, 257, 45 (1985)
[13] Abmjørn, J.; Durhuus, B.; Fröhlich, J., Nucl. Phys. B, 257, 433 (1985)
[14] David, F., Nucl. Phys., B257, 543 (1985)
[15] Kazakov, V. A.; Kostov, I. A.; Migdal, A. A., Phys. Lett., B157, 295 (1985)
[16] Sommerville, D. M.Y., (Proc. R. Soc. London, A115 (1927)), 103
[17] Gross, D.; Periwal, Phys. Rev. Lett., 60, 2105 (1988)
[18] Hamber, H.; Williams, R. M., Nucl. Phys., B248, 392 (1984)
[19] Eliezer, D., Nucl. Phys., B319, 667 (1989)
[20] Ambjørn, J.; Durhuus, B.; Jonsson, T., Mod. Phys. Lett., A6, 1133 (1991)
[21] Jurkiewicz, J.; Krzywicki, A.; Petersson, B., Phys. Lett., B177, 89 (1986)
[22] Ambjørn, J.; Durhuus, B.; Fröhlich, J.; Orland, P., Nucl. Phys., B275, 161 (1986)
[23] Ambjørn, J.; De Forcrand, Ph.; Koukiou, F.; Petritis, D., Phys. Lett, B197, 548 (1987)
[24] Ambjörn, J.; Varsted, S., Phys. Lett., B226, 285 (1991)
[25] Agishtein, M. E.; Migdal, A. A., Mod. Phys. Lett, A6, 1863 (1991) · Zbl 1020.83535
[26] Boulatov, D.; Krzywicki, A., Mod. Phys. Lett., A6, 3005 (1991)
[27] Ambjørn, J.; Varsted, S., Nucl. Phys., B373, 557 (1992)
[28] Ambjørn, J.; Boulatov, D.; Krzywicki, A.; Varsted, S., Phys. Lett., B276, 432 (1992)
[30] Baumann, B.; Berg, B., Nucl. Phys., B285, 391 (1987)
[32] Ambjørn, J.; Jurkiewicz, J., Phys. Lett., B278, 42 (1992)
[35] Alexander, J. W., Ann. Math., 31, 292 (1930) · JFM 56.0497.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.