×

Evidence for asymptotic safety from dimensional reduction in causal dynamical triangulations. (English) Zbl 1388.83099

Summary: We calculate the spectral dimension for a nonperturbative lattice approach to quantum gravity, known as causal dynamical triangulations (CDT), showing that the dimension of spacetime smoothly decreases from 4 on large distance scales to 3/2 on small distance scales. This novel result may provide a possible resolution to a long-standing argument against the asymptotic safety scenario. A method for determining the relative lattice spacing within the physical phase of the CDT parameter space is also outlined, which might prove useful when studying renormalization group flow in models of lattice quantum gravity.

MSC:

83C45 Quantization of the gravitational field
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory

References:

[1] S. Weinberg, General relativity, an Einstein centenary survey, Cambridge Univ. Press, Cambridge U.K. (1997).
[2] J. Ambjørn, J. Jurkiewicz and R. Loll, Spectral dimension of the universe, Phys. Rev. Lett.95 (2005) 171301 [hep-th/0505113] [INSPIRE]. · Zbl 1247.83243 · doi:10.1103/PhysRevLett.95.171301
[3] O. Lauscher and M. Reuter, Fractal spacetime structure in asymptotically safe gravity, JHEP10 (2005) 050 [hep-th/0508202] [INSPIRE]. · Zbl 1153.83023 · doi:10.1088/1126-6708/2005/10/050
[4] P. Hořava, Spectral dimension of the universe in quantum gravity at a Lifshitz point, Phys. Rev. Lett.102 (2009) 161301 [arXiv:0902.3657] [INSPIRE]. · doi:10.1103/PhysRevLett.102.161301
[5] L. Modesto, Fractal structure of loop quantum gravity, Class. Quant. Grav.26 (2009) 242002 [arXiv:0812.2214] [INSPIRE]. · Zbl 1181.83081 · doi:10.1088/0264-9381/26/24/242002
[6] J.J. Atick and E. Witten, The Hagedorn transition and the number of degrees of freedom of string theory, Nucl. Phys.B 310 (1988) 291 [INSPIRE]. · doi:10.1016/0550-3213(88)90151-4
[7] G. Calcagni and L. Modesto, Nonlocality in string theory, J. Phys.A 47 (2014) 355402 [arXiv:1310.4957] [INSPIRE]. · Zbl 1298.81254
[8] J. Ambjørn and J. Jurkiewicz, Four-dimensional simplicial quantum gravity, Phys. Lett.B 278 (1992) 42 [INSPIRE]. · Zbl 0925.83005 · doi:10.1016/0370-2693(92)90709-D
[9] S. Catterall, J.B. Kogut and R. Renken, Phase structure of four-dimensional simplicial quantum gravity, Phys. Lett.B 328 (1994) 277 [hep-lat/9401026] [INSPIRE]. · Zbl 0973.83517 · doi:10.1016/0370-2693(94)91480-X
[10] P. Bialas, Z. Burda, A. Krzywicki and B. Petersson, Focusing on the fixed point of 4D simplicial gravity, Nucl. Phys.B 472 (1996) 293 [hep-lat/9601024] [INSPIRE]. · doi:10.1016/0550-3213(96)00214-3
[11] B.V. de Bakker, Further evidence that the transition of 4D dynamical triangulation is first order, Phys. Lett.B 389 (1996) 238 [hep-lat/9603024] [INSPIRE]. · doi:10.1016/S0370-2693(96)01277-4
[12] J. Ambjørn and R. Loll, Nonperturbative Lorentzian quantum gravity, causality and topology change, Nucl. Phys.B 536 (1998) 407 [hep-th/9805108] [INSPIRE]. · Zbl 0940.83004 · doi:10.1016/S0550-3213(98)00692-0
[13] J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, Planckian birth of the quantum de Sitter universe, Phys. Rev. Lett.100 (2008) 091304 [arXiv:0712.2485] [INSPIRE]. · Zbl 1371.83066 · doi:10.1103/PhysRevLett.100.091304
[14] J. Ambjørn, S. Jordan, J. Jurkiewicz and R. Loll, A second-order phase transition in CDT, Phys. Rev. Lett.107 (2011) 211303 [arXiv:1108.3932] [INSPIRE]. · doi:10.1103/PhysRevLett.107.211303
[15] J. Ambjørn, J. Jurkiewicz and R. Loll, Reconstructing the universe, Phys. Rev.D 72 (2005) 064014 [hep-th/0505154] [INSPIRE]. · Zbl 1247.83243
[16] F. Hausdorff, Dimension und äußeres Maß (in German), Math. Ann.79 (1919) 157. · JFM 46.0292.01 · doi:10.1007/BF01457179
[17] D. Benedetti and J. Henson, Spectral geometry as a probe of quantum spacetime, Phys. Rev.D 80 (2009) 124036 [arXiv:0911.0401] [INSPIRE].
[18] T. Banks, TASI lectures on holographic space-time, SUSY and gravitational effective field theory, arXiv:1007.4001 [INSPIRE].
[19] A. Shomer, A pedagogical explanation for the non-renormalizability of gravity, arXiv:0709.3555 [INSPIRE].
[20] K. Falls and D.F. Litim, Black hole thermodynamics under the microscope, Phys. Rev.D 89 (2014) 084002 [arXiv:1212.1821] [INSPIRE].
[21] R. Percacci and G.P. Vacca, Asymptotic safety, emergence and minimal length, Class. Quant. Grav.27 (2010) 245026 [arXiv:1008.3621] [INSPIRE]. · Zbl 1206.83081 · doi:10.1088/0264-9381/27/24/245026
[22] B. Koch and F. Saueressig, Structural aspects of asymptotically safe black holes, Class. Quant. Grav.31 (2014) 015006 [arXiv:1306.1546] [INSPIRE]. · Zbl 1287.83033 · doi:10.1088/0264-9381/31/1/015006
[23] S. Carlip and D. Grumiller, Lower bound on the spectral dimension near a black hole, Phys. Rev.D 84 (2011) 084029 [arXiv:1108.4686] [INSPIRE].
[24] J. Laiho and D. Coumbe, Evidence for asymptotic safety from lattice quantum gravity, Phys. Rev. Lett.107 (2011) 161301 [arXiv:1104.5505] [INSPIRE]. · doi:10.1103/PhysRevLett.107.161301
[25] J. Ambjørn, L. Glaser, A. Görlich and J. Jurkiewicz, Euclidian 4D quantum gravity with a non-trivial measure term, JHEP10 (2013) 100 [arXiv:1307.2270] [INSPIRE]. · Zbl 1342.83052 · doi:10.1007/JHEP10(2013)100
[26] D. Coumbe and J. Laiho, Exploring Euclidean dynamical triangulations with a non-trivial measure term, arXiv:1401.3299 [INSPIRE]. · Zbl 1388.83064
[27] J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, The nonperturbative quantum de Sitter universe, Phys. Rev.D 78 (2008) 063544 [arXiv:0807.4481] [INSPIRE]. · Zbl 1371.83066
[28] J. Ambjørn, A. Görlich, J. Jurkiewicz, A. Kreienbuehl and R. Loll, Renormalization group flow in CDT, Class. Quant. Grav.31 (2014) 165003 [arXiv:1405.4585] [INSPIRE]. · Zbl 1297.81133 · doi:10.1088/0264-9381/31/16/165003
[29] T. Jonsson and J.F. Wheater, The spectral dimension of the branched polymer phase of two-dimensional quantum gravity, Nucl. Phys.B 515 (1998) 549 [hep-lat/9710024] [INSPIRE]. · Zbl 0949.82017 · doi:10.1016/S0550-3213(98)00027-3
[30] J. Ambjørn, D. Boulatov, J.L. Nielsen, J. Rolf and Y. Watabiki, The spectral dimension of 2D quantum gravity, JHEP02 (1998) 010 [hep-th/9801099] [INSPIRE]. · Zbl 0955.83005 · doi:10.1088/1126-6708/1998/02/010
[31] M. Reuter and F. Saueressig, Quantum Einstein gravity, New J. Phys.14 (2012) 055022 [arXiv:1202.2274] [INSPIRE]. · Zbl 1448.83010 · doi:10.1088/1367-2630/14/5/055022
[32] S. Rechenberger and F. Saueressig, The R2phase-diagram of QEG and its spectral dimension, Phys. Rev.D 86 (2012) 024018 [arXiv:1206.0657] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.