×

Jordan-Kronecker invariants of finite-dimensional Lie algebras. (English) Zbl 1387.17011

Summary: For any finite-dimensional Lie algebra we introduce the notion of Jordan-Kronecker invariants, study their properties, and discuss examples. These invariants naturally appear in the framework of the bi-Hamiltonian approach to integrable systems on Lie algebras and are closely related to Mishchenko-Fomenko’s argument shift method. We also state a generalised argument shift conjecture and prove it for many series of Lie algebras.

MSC:

17B08 Coadjoint orbits; nilpotent varieties
17B63 Poisson algebras

References:

[1] В. И. Арнольд, А. Б. Гивенталь, Симnлекmическая геомеmрия, Итоги науки и техн., Совр. прбл. математики, фунд. направл., т. 4, ВИНИТИ, М., 1985, 5-139. Engl. transl: V. I. Arnold, A. V. Givental, Symplectic geometry, in: Dynamical Systems IV, Encycl. of math. Sciences, Vol. 4, Springer, Berlin, 2001, pp. 1-138. · Zbl 1154.68045
[2] А. А. Архангельский, Вполне интегрируемые гамильтоновы системы на группе треугольных матриц, Матем. сб. 108(150) (1979), ном. 1, 134-142. Engl. transl.: A. A. Arkhangelskii, Completely integrable Hamiltonian systems on a group of triangular matrices, Math. USSR-Sb. 36 (1980), no. 1, 127-134. · Zbl 1249.17001
[3] A. V. Bolsinov, Commutative families of functions related to consistent Poisson brackets, Acta Appl. Math. 24 (1991), 253-274. · Zbl 0746.58035
[4] А. В. Болсинов, Согласованные скобки Пуассона на алгебрах Ли и полнота семейств функций в инволюции, Изв. АН СССР, Сер. мат. 55 (1991), вьш. 1, 68-92. Engl. transl.: A. V. Bolsinov, Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution, Math. USSR-Izv. 38 (1992), no. 1, 69-89. · Zbl 1249.17001
[5] А. В. Болсинов, Полные коммутативные подалгебры в алгебрах Пуассона полиномиальных: доказательство Мищенко-Фоменко, Труды сем. вект. тенз. анализу (MGU) 26 (2005), 87-109. Engl. version: A. V. Bolsinov, Complete commutative subalgebras in polynomial Poisson algebras: A proof of the Mischenko-Fomenko conjecture, arXiv:1206.3882 (2012). · Zbl 1206.42001
[6] A. V. Bolsinov, Some remarks about Mishchenko-Fomenko subalgebras, arXiv:1405. 1710 (2014). · Zbl 1418.17029
[7] A. V. Bolsinov, A. M. Izosimov, Singularities of bi-Hamiltonian systems, Comm. Math. Phys. 331 (2014), no. 2, 507-543. · Zbl 1315.37040
[8] A. V. Bolsinov, I. K. Kozlov, Jordan-Kronecker invariants of Lie algebra representations and degrees of invariant polynomials, arXiv:1407.1878 (2014). · Zbl 1536.17009
[9] A. V. Bolsinov, V. S. Matveev, Splitting and gluing lemmas for geodesically equivalent pseudo-Riemannian metrics, Trans. Amer. Math. Soc. 363 (2011), no. 8, 4081-4107. · Zbl 1220.53020
[10] A. V. Bolsinov, A. A. Oshemkov, Bi-Hamiltonian structures and singularities of integrable systems, Regular and Chaotic Dynamics 14 (2009), nos. 4-5, 325-348. · Zbl 1229.37092
[11] А. В. Болсинов, К. М. Зуев, Формальная теорема Фробениуса и метод сдвига аргумента, Мат. зматика. 86 (2009), вьш 1, 3-13. Engl. transl.: A. V. Bolsinov, K. M. Zuev, A formal Frobenius theorem and argument shift, Math. Notes 86 (2009), no. 1, 10-18. · Zbl 0151.00103
[12] A. V. Bolsinov, P. Zhang, Jordan-Kronecker invariants of finite-dimensional Lie algebras (2012), arXiv:1211.0579. · Zbl 1387.17011
[13] J.-Y. Charbonnel, A. Moreau, The index of centralizers of elements of reductive Lie algebras, Documenta Math. 15 (2010), 387-421. · Zbl 1223.17014
[14] А. Г. Элашвили, Фробениусовы, алгебры Ли 16 (1982), вьш. 4, 94-95. Engl. transl.: A. G. Elashvili, Frobenius Lie algebras, Funct. Analysis Appl. 16 (1982), no. 4, 326-328. · Zbl 0519.17005
[15] Ф. Гантмахер, Теория матриц, Гос. изд. теор. лит., М., 1953. Engl. transl.: F. Gantmacher, Theory of Matrices, AMS, Chelsea, New York, 1959. · Zbl 0050.24804
[16] I. M. Gelfand, I. Zakharevich, Webs, Veronese curves, and bi-Hamiltonian systems, J. Funct. Anal. 99 (1991), no. 1, 150-178. · Zbl 0739.58021
[17] I. M. Gelfand, I. Zakharevich, On the local geometry of a bi-Hamiltonian structure, in: The Gel’fand Mathematical Seminars, 1990-1992, Birkhäuser Boston, Boston, MA, 1993, pp. 51-112. · Zbl 0809.57013
[18] I. M. Gelfand, I. Zakharevich, Webs, Lenard schemes, and the local geometry of bi-Hamiltonian Toda and Lax structures, Selecta Math., New Series 6 (2000), no. 2, 131-183. · Zbl 0986.37060
[19] W. de Graaf, Computing with nilpotent orbits in simple Lie algebras of exceptional type, LMS Journal of Computation and Mathematics 11 (2008), 280-297. · Zbl 1222.17003
[20] Г. Б. Гуревич, Канонизация пары бивекторов, Труды сем. вект. тенз. анализу 8 (1950), 355-363. 8 (1950), 355-363. [G. B. Gurevich, Canonization of a pair of bivectors, Tr. Semin. Vektorn. Tenz. Anal. 8 (1950), 355-363 (Russian).] · Zbl 0041.48406
[21] J. Haantjes, On Xm-forming sets of eigenvectors, Nederl. Akad. Wetensch. Proc. Ser. A. 58 (1955) = Indag. Math. 17 (1955), 158-162. · Zbl 0068.14903
[22] A. Izosimov, The derived algebra of a stabilizer, families of coadjoint orbits and sheets, J. Lie Theory 24 (2014), no. 3, 705-714. · Zbl 1373.17015
[23] A. Izosimov, Generalized argument shift method and complete commutative subalgebras in polynomial Poisson algebras, arXiv:1406.3777 (2014).
[24] A. Joseph, D. Shafrir, Polynomiality of invariants, unimodularity and adapted pairs, Transform. Groups 15 (2010), no. 4, 851-882. · Zbl 1275.17022
[25] F. Knop, P. Littelmann, Der Grad erzeugender Funktionen von Invariantenringen. Math. Zeit. 196 (1987), no. 2, 211-229. · Zbl 0635.20017
[26] А. А. Короткевич, Интегрируемые гамильтоновы системы на алгебрах Ли, малой: размерносmи, Матем. сб. 200 (2009), нoм. 12, 3-40, Engl. transl.: A. A. Korotkevich, Integrable Hamiltonian systems on low-dimensional Lie algebras, Sbornik: Math. 200 (2009), no. 12, 1731-1766. · Zbl 1259.08001
[27] I. K. Kozlov, Private communication, October 2012.
[28] L. Kronecker, Algebraische reduction der schaaren bilinearer formen, S.-B. Akad. Berlin, 1890, 763-776.
[29] С. В. Манаков, Замечание об интегрировании уравнений Эйлера динамики пмерного твердого тела, Функц. Анализ и его прил. 10 (1976), вьш. 4, 93-94. Engl. transl: S. V. Manakov, Note on the integration of Euler’s equations of the dynamics of an n-dimensional rigid body, J. Funct. Anal. 10 (1976), no. 4, 328-329. · Zbl 0128.10301
[30] А. С. Мищенко, А. Т. Фоменко, Уравнения Эйлера на конечномерных группах Ли, Изв. СССР, Сер. мат. 42 (1978), вьш. 2, 396-415. Engl. transl.: A. S. Mischenko, A. T. Fomenko, Euler equations on finite-dimensional Lie groups, Math. USSR-Izv. 12 (1978), no. 2, 371-389. · Zbl 0115.15006
[31] P. Olver, Canonical forms and integrability of bi-Hamiltonian systems, Physics Letters A 148, nos. 3-4, 177-187.
[32] A. I. Ooms, On Frobenius Lie algebras, Comm. Algebra 8 (1980), 13-52. · Zbl 0421.17004
[33] A. Ooms, M. Van den Bergh, A degree inequality for Lie algebras with a regular Poisson semi-center, J. Algebra 323 (2010), no. 2, 305-322. · Zbl 1254.17011
[34] A. Panasyuk, Veronese webs for bi-Hamiltonian structures of higher rank, Banach Center Publ. 51 (2000), 251-261. · Zbl 0996.53053
[35] A. Panasyuk, Algebraic Nijenhuis operators and Kronecker Poisson pencils, Diff. Geom. and Appl. 24 (2006), no. 5, 482-491. · Zbl 1114.53067
[36] A. Panasyuk, Bi-Hamiltonian structures with symmetries, Lie pencils and integrable systems, J. Phys. A: Math. Theor. 42 (2009), 165-205. · Zbl 1196.70013
[37] D. Panyushev, The index of a Lie algebra, the centraliser of a nilpotent element, and the normaliser of the centraliser, Math. Proc. Camb. Phil. Soc. 134 (2003), 41-59. · Zbl 1041.17022
[38] D. Panyushev, On the coadjoint representation of Z2-contractions of reductive Lie algebras, Adv. Math. 213 (2007), no. 1, 380-404. · Zbl 1177.17010
[39] D. Panyushev, A. Premet, O. Yakimova, On symmetric invariants of centralisers in reductive Lie algebras, J. Algebra 313 (2007), no. 1, 343-391. · Zbl 1163.17012
[40] J. Patera, R. T. Sharp, P. Winternitz, H. Zassenhaus, Invariants of real low dimension Lie algebras, J. Math. Physics 17 (1976), no. 6, 986-994. · Zbl 0357.17004
[41] Б. Привитцер, Новые примеры интегрируемых гамильтоновых систем на полупрямых суммах алгебр Ли, Матем. сб. 184 (1993), ном. 10, 135-143. Engl. transl.: B. Privittser, New examples of integrable Hamiltonian systems on semidirect sums of Lie algebras, Russian Acad. Sci. Sb. Math. 80 (1995), no. 1, 247-254. · Zbl 0862.11002
[42] С. T. Садэтов, Доказательство гипотезы Мищенко-Фоменко, ДАН CCCP 397 (2004), no. 6, 751-754. Engl. transl.: S. T. Sadetov, A proof of the Mishchenko-Fomenko conjecture, Doklady Math. 70 (2004), no. 1, 634-638. · Zbl 1117.53024
[43] R. C. Thompson, Pencils of complex and real symmetric and skew matrices, Linear Algebra and its Appl. 147 (1991), 323-371. · Zbl 0726.15007
[44] В. В. Трофимов, Уравнения Эйлера на борелевских подалгебрах полупростых алгебр Ли. Изв. AH CCCP, Cep. мат. 43 (1979), вьш. 3, 714-732. Engl. tranl.: V. V. Trofimov, Euler equations on Borel subalgebras of semisimple Lie algebras, Math. USSR-Izv. 14 (1980), no. 3, 653-670. · Zbl 0467.00010
[45] F.-J. Turiel, Classification locale d’un couple de formes symplectiques Poisson compatibles, C. R. Acad. Sci., Paris, Série I 308 (1989), 575-578. · Zbl 0673.53022
[46] F.-J. Turiel, Décomposition locale d’une structure bihamiltonienne en produit Kronecker-symplectique, C. R. Math. Acad. Sci. Paris 349 (2011), no. 1-2, 85-87. · Zbl 1208.53086
[47] F.-J. Turiel, Un exemple en classe C∞de structure bihamiltonienne non décomposable localement en produit Kronecker-symplectique, C. R. Math. Acad. Sci. Paris 349 (2011), no. 7-8, 451-454. · Zbl 1227.53085
[48] E. B. Vinberg, O. S. Yakimova, Complete families of commuting functions for coisotropic Hamiltonian actions, arXiv:math/0511498 (2007). · Zbl 1475.17039
[49] С. Воронцов, Кронекера индексы алгебр Ли и оценку сmеnеней инвариантов, Вестник моск. унив., мат., мех. 66 (2011), no. 1, 26-30. A. S. Vorontsov, Kronecker indices of Lie algebras and invariants degrees estimate, Moscow Univer. Math. Bull. 66 (2011), no. 1, 25-29. · Zbl 1249.17001
[50] K. Weierstrass, Zur Theorie der bilinearen und quadratischen formen, Monatsh. Akad. Wiss., Berlin (1867), 310-338. · JFM 01.0054.04
[51] О. С. Якимова, Индекс централизаторов элементов в классических алгебрах Ли. функц. анализ и его прил. 40 (2006), вьш. 1, 52-64. Engl. transl.: O. S. Yakimova, The index of centralizers of elements in classical Lie algebras, Funct. Analysis Appl. 40 2006, no. 1, 42-51. · Zbl 0100.02301
[52] O. S. Yakimova, One-parameter contractions of Lie-Poisson brackets, J. Eur. Math. Soc. 16 (2014), 387-407. · Zbl 1365.17012
[53] O. S. Yakimova, Symmetric invariants of Z2-contractions and other semi-direct products, preprint, 2014, http://www.mccme.ru/ yakimova/z2contr-2014.pdf.
[54] I. Zakharevich, Kronecker webs, bihamiltonian structures, and the method of argument translation, Transform. Groups 6 (2001), no. 3, 267-300. · Zbl 0994.37034
[55] P. Zhang, Algebraic Aspects of Compatible Poisson Structures, PhD Thesis, Loughborough University, 2012.
[56] P. Zhang, Algebraic properties of compatible Poisson brackets, Regul. and Chaotic Dyn. 19 (2014), no. 3, 267-288. · Zbl 1316.15014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.