×

Pencils of complex and real symmetric and skew matrices. (English) Zbl 0726.15007

The appearance of this paper in print is a historic event. For the last 18 years the corresponding manuscript has been held in high esteem by most anyone interested in normal forms for symmetric, Hermitian or skew matrix pencil and this reviewer has sent out numerous copies of Thompson’s original 1973 exposition to those that have queried him on the subject. Wherein then lies the value of this paper?
It is an exposition of canonical pair forms that can be achieved under simultaneous congruence for two real symmetric, complex Hermitian, and skew matrices or mixed pairs. It is done much in the style and notation of F. R. Gantmacher’s chapter XII Volume 2 of his book “Applications of the theory of matrices” (1959; Zbl 0085.010, Russian original 1953; Zbl 0050.248). It uses Gantmacher’s minimal indices of a pencil A-\(\rho\) B and, in a way, completes his work. This paper gives explicit constraints on the elementary divisors of the pencil in each possible case. There are essentially two different types of pencils: those that are governed by inertia laws under congruence, e.g. real symmetric ones, and those that are not, e.g. complex symmetric pencils. The question of uniqueness of the parameters of the canonical pair form for inertia governed pencils takes significant work and skill to settle. It is presented here in the shortest way known to the reviewer.
Added to the original 1973 manuscript are a list of references and an introduction to them, making it obvious why so many researcher have needed this information: minimal indices are essential tools in modern control theory; numerical analysis, particularly eigenvalue perturbations can be studied in detail via pencils; the Hasse-Minkowski principle of number theory is intimately related to simultaneous congruence.
The proofs and results of this exposition are not original or new; however, to find all cases combined in one concise paper with a lucid presentation of the underlying ideas is a welcome addition to the pencil literature.
Reviewer: F.Uhlig (Auburn)

MSC:

15A22 Matrix pencils
15A21 Canonical forms, reductions, classification
15B48 Positive matrices and their generalizations; cones of matrices
15B57 Hermitian, skew-Hermitian, and related matrices
15A63 Quadratic and bilinear forms, inner products
Full Text: DOI

References:

[1] Aitken, A. C., On the canonical form of a singular matrix pencil, Quart. J. Math. Oxford, 4, 241-245 (1933) · Zbl 0008.19401
[2] Bôcher, M., Introduction to Higher Algebra, ((1907), MacMillan: MacMillan New York). (Introduction to Higher Algebra (1964), MacMillan: MacMillan New York), 303, MR 30, 3098 · JFM 39.0118.01
[3] Bromwich, T. J., On the canonical reduction of bilinear forms, Proc. London Math. Soc., 32, 321-352 (1900) · JFM 31.0118.03
[4] Cohen, N., Polynomial systems and Kronecker invariants, Linear Algebra Appl., 87, 257-265 (1987), MR 88b:15026 · Zbl 0617.93005
[5] de Vries, H., Pairs of linear mappings, Nederl. Akad. Wetensch. Indag. Math., 46, 449-452 (1984), MR 86k:15006 · Zbl 0555.15006
[6] Djoković, D.Ž., Classification of pairs consisting of a linear and a semilinear map, Linear Algebra Appl., 20, 147-165 (1978), MR 58, 726 · Zbl 0384.15007
[7] Frobenius, G., Über die Elementarteiler der Determinanten, Collected Works, Vol. 2, 577-590 (1894) · JFM 25.0221.03
[8] Gantmacher, F. R., (Theory of Matrices (1959), Chelsea: Chelsea New York), 6372, MR 21 · Zbl 0085.01001
[9] Gohberg, I.; Lancaster, P.; Rodman, L., Matrix Polynomials (1982), Academic: Academic New York, MR 84c:15012 · Zbl 0482.15001
[10] Ja’Ja’, J., An addendum to Kronecker’s theory of pencils, SIAM J. Appl. Math., 37, 700-712 (1979), MR 81e:15013 · Zbl 0425.15004
[11] Kalogeropoulos, G.; Karcanias, N., Relations between invariant subspaces and deflating subspaces of a regular pair \((F,G)\), Math. Balkanica, 2, 54-63 (1988), MR 89k:15020 · Zbl 0770.47001
[12] Karcanias, N.; Kalogeropoulos, G., On the Segre-Weyr characteristic of right (left) regular matrix pencils, Internat. J. Control, 44, 991-1015 (1986), MR 87m:15030 · Zbl 0631.15005
[13] Karcanias, N.; Kalogeropoulos, G., Right, left characteristic sequences and column, row minimal indices of a singular pencil, Internat. J. Control, 47, 937-946 (1988), MR 90a:15012 · Zbl 0643.15002
[14] Kublanovskaja, V. N., The connection between a spectral polynomial for linear pencils and some problems of algebra, Zap. Nauč. Sem. Leningrad. Otdel. Mat. Steklov., 80, 267 (1978), MR 81a:15011
[15] Ledermann, W., Reduction of singular pencils of matrices, Proc. Edinburgh Math. Soc. Ser. 2, 4, 92-105 (1934) · Zbl 0010.38702
[16] Lewis, F. L., Further remarks on the Cayley-Hamilton theorem and Leverrier’s method for the matrix pencil \(( sE -A\), IEEE Trans. Automat. Control, 31, 869-870 (1986), MR 87h:15021 · Zbl 0601.15010
[17] Mitra, S. K., Simultaneous diagonalization of rectangular matrices, Linear Algebra Appl., 47, 139-150 (1982), MR 83k:15004 · Zbl 0495.15008
[18] Pevzner, S. L., Nondegenerate bilinear forms on a pair of complex Euclidean spaces of identical dimensions, Trudy Naučn. Ob″ed. Prepodav. Fiz.-Mat. Fak. Ped. Inst. Dal’n. Vostok, 5, 131-137 (1965), MR 42, 933
[19] Rosenbrock, H. H., State Space and Multivariable Theory (1970), Wiley: Wiley New York, MR 48, 3550 · Zbl 0246.93010
[20] S̆avarovskiǐ, B. Z., Characteristic vectors and similarity of matrix pencils of simple structure, Mat. Metody i Fiz.-Meh. Polja, 9, 131 (1979)
[21] Turnbull, H. W., On the reduction of singular matrix pencils, Proc. Edinburgh Math. Soc. Ser. II, 4, 67-76 (1936) · Zbl 0010.38701
[22] Turnbull, H. W.; Aitken, A. C., An Introduction to the Theory of Canonical Matrices (1961), Dover: Dover New York, MR 23, A906 · Zbl 0096.00801
[23] Vardulakis, A. I.G.; Karcanias, N., Relations between strict equivalence invariants and structure at infinity of matrix pencils, IEEE Trans. Automat. Control, 28, 514-516 (1983), MR 84i:15008 · Zbl 0519.93025
[24] Waterhouse, W., The codimension of singular matrix pairs, Linear Algebra Appl., 57, 227-245 (1984), MR 85d:15012 · Zbl 0526.15006
[25] Williamson, J., Simultaneous reduction of a square matrix and an arbitrary matrix to canonical form, Amer. J. Math., 61, 81-88 (1939) · JFM 65.0042.01
[26] Williamson, J., On the equivalence of two singular matrix pencils, Proc. Edinburgh Math. Soc. Ser., 24, 224-231 (1936) · Zbl 0014.19601
[27] Adamovic, O.; Golovina, E., Invariants of a pair of bilinear forms, Vestnik Moskov. Univ. Ser. I Mat. Meh., 2, 15-18 (1977), MR 57, 361 · Zbl 0365.15011
[28] Albert, A. A., Symmetric and alternating matrices in an arbitrary field, Trans. Amer. Math. Soc., 43, 386-436 (1938) · Zbl 0018.34202
[29] Bromwich, T. J., Quadratic Forms and Their Classifications by Means of Invariant Factors (1971), Hafner: Hafner New York, MR 50, 2216 · JFM 37.0134.01
[30] Bromwich, T. J., On a canonical reduction of bilinear forms, Proc. London Math. Soc., 30, 1, 321-352 (1900) · JFM 31.0118.03
[31] Cikunov, I. K., Structure of isometric transformations of a symplectic and orthogonal vector space, Ukrain. Mat. Zh., 18, 79-93 (1966), MR 34, 2596 · Zbl 0161.03101
[32] Cikunov, I. K., On the structure of isometric transformations of a symplectic and orthogonal vector space, Soviet Math. Dokl., 6, 1479-1481 (1965), MR 33, 7353 · Zbl 0144.20401
[33] Cikunov, I., A class of isometric transformations of a symplectic or orthogonal vector space, Ukrain. Math. Zh., 18, 122-127 (1966), MR 34, 4279
[34] Cikunov, I., On the structure of isometric transformations of symplectic and orthogonal vector spaces over a finite field GF \((q)\), (Algebra and Mathematical Logic: Studies in Algebra (1966), Izdat. Kiev. Univ), 72-97, MR 34, 7542 · Zbl 0207.04301
[35] Dickson, L. E., On quadratic, Hermitian and bilinear forms, Trans. Amer. Math. Soc., 7, 275-292 (1906) · JFM 37.0137.01
[36] Dickson, L. E., Singular case of pairs of bilinear, quadratic, or Hermitian forms, Trans. Amer. Math. Soc., 29, 239-253 (1927) · JFM 53.0101.03
[37] Dickson, L. E., Equivalence of pairs of bilinear or quadratic forms under rational transformation, Trans. Amer. Math. Soc., 10, 347-360 (1909) · JFM 40.0163.01
[38] Dickson, L. E., Algebraic Theories (1959), Dover: Dover New York, MR 21, 4122 · JFM 52.0094.01
[39] Dieudonné, J., Sur la réduction canonique des couples de matrices, Bull. Soc. Math. France, 74, 130-146 (1946), MR 9, 264 · Zbl 0061.01307
[40] Ermolaev, Ju. B., Simultaneous reduction of a pair of bilinear forms to canonical form, Soviet Math. Dokl., 1, 523-525 (1960), MR 22, 9505. · Zbl 0094.01001
[41] Ermolaev, Ju. B., The simultaneous reduction of a pair of bilinear forms to canonical form over an arbitrary perfect field of characteristic ≠ 2, Kazan State University Science Survey Conference, 25-27 (1962), MR 32, 5670.
[42] Ermolaev, Ju. B., On Pairs of Bilinear Forms, (Candidate Dissertation (1963), Kazan. Gos. Univ: Kazan. Gos. Univ Kazan)
[43] Gabriel, P., Appendix: Degenerate bilinear forms, J. Algebra, 31, 67-72 (1974), MR 50, 369 · Zbl 0282.15014
[44] Hodge, W.; Pedoe, D., Methods of Algebraic Geometry II (1952), Cambridge U.P.,, MR 13, 972 · Zbl 0048.14502
[45] Klingenberg, W., Paare symmetrischer und alternierender Formen zweitens Gerade, Abh. Math. Sem. Univ. Hamburg, 19, 78-93 (1954), MR 16, 327 · Zbl 0055.24804
[46] Kocaǧlan, E.; Demirekler, M., On a property of pencils of matrices, Internat. J. Control, 40, 363-366 (1984), MR 85h:15015 · Zbl 0571.15001
[47] Frobenius, G., Über die cogredienten Transformationen der bilinearen Formen, (Collected Works, Vol. 2 (1896)), 695-704 · JFM 27.0079.02
[48] Kraljevic, H., Simultaneous diagonalization of two symmetric bilinear functionals, Glas. Mat. Ser. III, 1, 57-63 (1966), MR 34, 7544 · Zbl 0168.03402
[49] Kronecker, L., Über Schaaren quadratischer Formen, (Collected Works I (1968), Chelsea: Chelsea New York), 63-174 · JFM 06.0071.01
[50] Kronecker, L., Über Schaaren von quadratischen und bilinearen Formen, (Collected Works I (1968), Chelsea: Chelsea New York), 349-413 · JFM 06.0071.01
[51] Kronecker, L., Über die congruenten Transformationen der bilinear Formen, (Collected Works I (1968), Chelsea: Chelsea New York), 423-483 · JFM 20.0182.02
[52] Kronecker, L., Algebraische Reduction von Scharen Bilinearer Formen, (Collected Works III (second part) (1968), Chelsea: Chelsea New York), 141-155 · JFM 22.0169.01
[53] Kronecker, L., Algebraischer Reduction der Schaaren quadratischer Formen, (Collected Works III (second part) (1968), Chelsea: Chelsea New York), 159-198 · JFM 23.0128.02
[54] Milnor, J., On isometries of inner product spaces, Invent. Math., 8, 83-97 (1969), MR 40, 2764 · Zbl 0177.05204
[55] Muth, P., Theorie und Anwendung der Elementartheiler (1899), Teubner: Teubner Leipzig · JFM 30.0123.01
[56] Pevzner, S. L., Automorphisms of pairs of quadrics in a projective space, Sibirsk. Mat. Zh., 7, 1076-1086 (1966), MR 34, 656 · Zbl 0156.19703
[57] Pevzner, S. L., Automorphisms of pairs of quadrics in projective space II, Sibirsk. Mat. Zh., 8, 1385-1398 (1967), MR 36, 5804 · Zbl 0158.39404
[58] Pevzner, S. L., Geometry of a pair of quadratics in projective space, Sibirsk. Mat. Zh., 10, 116-134 (1969), MR 38, 6440 · Zbl 0172.46001
[59] Pevzner, S. L., Simultaneous invariants of pairs of quadrics in \(n\)-dimensional projective space, 1A400 (1965), RZ
[60] Pevzner, S. L., Simultaneous invariants of sections of quadrics in the plane in higher dimensional complex projective space, Ukrain. Mat. Zh., 14, 217-219 (1962), MR 25, 2483 · Zbl 0129.12702
[61] Pickert, G.; Matrizen, Normalformen von, (Algebra und Zahlentheorie (1953), Enzykl. Math. Wiss., Teubner: Enzykl. Math. Wiss., Teubner Leipzig), 44-72, MR 15, 497
[62] Stickelberger, L., Über Scharen von bilinearen und quadratischen Formen, J. Reine Angew. Math., 86, 20-43 (1879) · JFM 10.0077.01
[63] Taussky, O., The characteristic polynomial and the characteristic curve of matrices with complex entries, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 195, 175-178 (1986), MR 88h:15024 · Zbl 0612.15004
[64] Waterhouse, W., Pairs of forms and pencils of quadrics, Queen’s Papers in Pure and Appl. Math., 46, 650-656 (1977), MR 58, 16511 · Zbl 0394.10012
[65] Waterhouse, W., Pairs of symmetric bilinear forms in characteristic 2, Pacific J. Math., 69, 275-283 (1977), MR 57, 5899 · Zbl 0362.15015
[66] Weierstrass, K., Zur Theorie der bilinearen und quadratischen Formen, (Collected Works, 2 (1868)), 19-44 · JFM 01.0054.04
[67] Wonenburger, M. J., Simultaneous diagonalization of symmetric bilinear forms, J. Math. and Mech., 15, 617-622 (1966) · Zbl 0218.15010
[68] Au-Yeung, Y. H., On the semidefiniteness of the real pencil of two Hermitian matrices, Linear Algebra Appl., 10, 71-76 (1975), MR 50, 13087 · Zbl 0302.15028
[69] Au-Yeung, Y. H., Some theorems on simultaneous diagonalization of two Hermitian bilinear functions, Glas. Mat. Ser. III, 6, 3-8 (1971), MR 45, 8668 · Zbl 0227.15006
[70] Au-Yeung, Y. H., Simultaneous diagonalization of two Hermitian matrices into 2×2 blocks, Linear and Multilinear Algebra, 2, 249-252 (1974), MR52, 5703 · Zbl 0302.15027
[71] Au-Yeung, Y. H., A necessary and sufficient condition for the simultaneous diagonalization of two Hermitian matrices and its application, Glasgow Math. J., 11, 81-83 (1970), MR 41, 6873 · Zbl 0194.34201
[72] Au-Yeung, Y. H., A note on some theorems on simultaneous diagonalization of two Hermitian matrices, Proc. Cambridge Philos. Soc., 70, 383-386 (1971), MR 45, 281 · Zbl 0226.15006
[73] Au-Yeung, Y. H., A theorem on a mapping from a sphere to the circle and the simultaneous diagonalization of two Hermitian matrices, Proc. Amer. Math. Soc., 20, 545-548 (1969), MR 38, 3282 · Zbl 0186.05903
[74] Au-Yeung, Y. H., Some theorems on the real pencil and simultaneous diagonalization of two Hermitian bilinear functions, Proc. Amer. Math. Soc., 23, 246-253 (1969), MR 40, 7290 · Zbl 0187.30301
[75] Ballantine, C. S.; Yip, E. L., Uniqueness of the nonsingular core for Hermitian and other matrix pencils, Linear and Multilinear Algebra, 4, 61-67 (1976), MR 53, 13267 · Zbl 0332.15004
[76] Benedetti, R.; Cragnolini, P., On simultaneous diagonalization of one Hermitian and one symmetric form, Linear Algebra Appl., 57, 215-226 (1984), MR 85c:15033 · Zbl 0531.15009
[77] Berman, A.; Ben-Israel, Adi, A note on pencils of Hermitian or symmetric matrices, SIAM J. Appl. Math., 21, 51-54 (1971), MR 45, 3443 · Zbl 0218.15008
[78] Binding, P., The inertia of a Hermitian pencil, Linear Algebra Appl., 63, 179-191 (1984), MR 87c:15024 · Zbl 0567.15009
[79] Binding, P., A canonical form for selfadjoint pencils in Hilbert space, Integral Equations operator Theory, 12, 324-342 (1989) · Zbl 0674.47004
[80] Bognar, J., Indefinite Inner Product Spaces, (Ergeb. Math. 78 (1974), Springer-Verlag: Springer-Verlag New York), MR 57, 7125 · Zbl 0277.47024
[81] Calabi, E., Linear systems of real quadratic forms, Proc. Amer. Math. Soc., 15, 844-846 (1964), MR 29, 3480 · Zbl 0178.35903
[82] Calabi, E., Linear systems of real quadratic forms II, Proc. Amer. Math. Soc., 84, 331-334 (1982), MR 83m:15019 · Zbl 0496.15017
[83] Ermolaev, Ju. B., The simultaneous reduction of symmetric and Hermitian forms, Izv. Vysš. Učebn. Zaved. Matematika, no. 2, 21, 10-23 (1961), MR 27, 5770 · Zbl 0112.25004
[84] Finsler, P., Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen, Comm. Math. Helv., 9, 188-192 (1937) · JFM 63.0054.02
[85] Friedland, S.; Simon, B., The codimension of degenerate pencils, Linear Algebra Appl., 44, 41-53 (1982), MR 83h:15008 · Zbl 0487.15008
[86] Ghislain, R., Orbite par des transformations linéares d’un couple de matrices symétriques réelles et ses représentants canonique, Rev. Roumaine Math. Pures Appl., 22, 377-388 (1977), MR 56, 386 · Zbl 0359.15008
[87] Gohberg, I.; Lancaster, P.; Rodman, L., Matrices and Indefinite Scalar Products (1983), Birkhäuser: Birkhäuser Basel, MR 87j:15001. · Zbl 0513.15006
[88] Greub, W., Linear Algebra, ((1963), Springer-Verlag), 231-237, MR 28, 1201 · Zbl 0111.01401
[89] Hestenes, M., Pairs of quadratic forms, Linear Algebra Appl., 1, 397-407 (1968), MR 38, 171 · Zbl 0174.06401
[90] Hong, Y. P.; Horn, R.; Johnson, C. R., On the reduction of pairs of Hermitian or symmetric matrices to diagonal form by congruence, Linear Algebra Appl., 73, 213-226 (1986), MR 87c:15023 · Zbl 0593.15005
[91] Hong, Y., A canonical form for Hermitian matrices under complex orthogonal congruence, SIAM J. Matrix Anal., 10 (1989) · Zbl 0668.15009
[92] Hua, L. K., On the theory of automorphic functions of a matrix variable II—The classification of hypercircles under the symplectic group, Amer. J. Math., 66, 531-563 (1944), MR 6, 124 · Zbl 0063.02920
[93] Ingraham, M.; Wegner, K. W., The equivalence of pairs of Hermitian matrices, Trans. Amer. Math. Soc., 38, 145-162 (1935) · Zbl 0012.09901
[94] Izotov, G. E., Simultaneous reduction of a quadratic and a Hermitian form, Izv. Vysš. Učebn. Zaved. Matematika, no. 1, 143-159 (1957), MR 23A, 3149 · Zbl 0091.01903
[95] Kraljević, H., Simultaneous diagonalization of two σ-Hermitian forms, Glas. Mat. Ser. III, 5, 211-216 (1970), MR 43, 3281 · Zbl 0258.15017
[96] Laffey, T., A counterexample to Kippenhahn’s conjecture on Hermitian pencils, Linear Algebra Appl., 51, 179-182 (1983), MR 85d:15013b · Zbl 0539.15004
[97] Laffey, T.; Gaines, F.; Shapiro, H., Pairs of matrices with quadratic minimal polynomials, Linear Algebra Appl., 52, 289-292 (1983), MR 84i:15011 · Zbl 0515.15006
[98] Langer, H.; Najman, B., Some interlacing results for indefinite Hermitian matrices, Linear Algebra Appl., 69, 131-154 (1985), MR 87b:15034 · Zbl 0577.15006
[99] Lee, A., Hermitian and unitary matrix pencils, Period. Math. Hungar., 5, 255-259 (1974), MR 51, 5629 · Zbl 0301.15010
[101] Loewy, A., Über die Charakteristik einer reelen quadratischen Form von nicht verschwindenden Determinanten, Math. Ann., 122, 53-72 (1900) · JFM 31.0116.02
[102] Logsden, M. I., Equivalence and reduction of pairs of Hermitian forms, Amer. J. Math., 44, 247-260 (1922) · JFM 48.0095.02
[103] Majinder, K., On simultaneous Hermitian congruence transformations of matrices, Amer. Math. Monthly, 70, 842-844 (1963) · Zbl 0118.25901
[104] Majinder, K., Linear combinations of Hermitian and real symmetric matrices, Linear Algebra Appl., 25, 95-105 (1979), MR 80b:15033 · Zbl 0421.15024
[105] Malcev, A. I., Foundations of Linear Algebra (1963), Freeman: Freeman San Francisco, MR 29, 3477
[106] Marcus, M., Pencils of real symmetric matrices and the numerical range, Aequationes Math., 17, 91-103 (1978), MR 58, 5735 · Zbl 0386.15010
[107] Muth, P., Über reelle Äquivalenz von Scharen reeller quadratischer Formen, J. Reine Angew. Math., 128, 302-321 (1905) · JFM 36.0169.01
[108] Ng, D., An effective criterion for congruence of real symmetric matrix pairs, Linear Algebra Appl., 13, 11-18 (1976), MR 53, 2981 · Zbl 0412.15007
[109] Ostrowski, A., Über Produkte Hermitescher Matrizen und Büschel Hermitescher Formen, Math. Z., 72, 1-15 (1959), MR 21, 7217 · Zbl 0087.01803
[110] Petrov, A. Z., Einstein Spaces (1969), Pergamon: Pergamon New York, MR 39, 6225 · Zbl 0174.28305
[111] Pevzner, S. L., Invariants of a pair of real quadratic forms, Izv. Vysš. Učebn. Zaved. Matematika, 98, 83-91 (1970), MR 44, 232 · Zbl 0231.15021
[112] Pevzner, S. L., Geometry of pairs of Hermitian quadrics, Dal. Mat. Sb., 28-34 (1972), RZ 7A773, 1974
[113] Pevzner, S. L., Invariants of pairs of real forms, of which one is symmetric, the other skew symmetric, Material of the 27th Interblock Conference, 195-197 (1969), RZ 8A262, 1969
[114] Pevzner, S. L., Invariants of pairs of real quadratic forms, Material of the 7th Mathematics and 7th Physics Conference, 57-59 (1968), RZ 4A320, 1969
[115] Shapiro, H., Unitary Block Diagonalization and the Characteristic Polynomial of a Pencil Generated by Hermitian Matrices (1979), California Inst. of Technology
[116] Shapiro, H., On a conjecture of Kippenhahn about the characteristic polynomial of a pencil generated by two Hermitian matrices, Linear Algebra Appl. II, 45, 97-108 (1982), MR 83k:15012a, 83k:15012b. · Zbl 0495.15007
[117] Shapiro, H., Hermitian pencils with a cubic minimal polynomial, Linear Algebra Appl., 48, 81-103 (1982), MR 84h:15014. · Zbl 0515.15005
[118] Taussky, O., On the congruence transformation of a pencil of real symmetric matrices to a pencil with identical characteristic polynomial, Linear Algebra Appl., 52, 687-691 (1983), MR 84i:15006 · Zbl 0515.15004
[119] Taussky, O., Positive definite matrices, (Shisha, O., Inequalities (1967), Academic: Academic New York), 309-319, MR 36, 3806
[120] Thompson, R. C., The characteristic polynomial of a principal subpencil of a Hermitian matrix pencil, Linear Algebra Appl., 14, 135-177 (1976), MR 57, 16335 · Zbl 0386.15011
[121] Thompson, R. C., Simultaneous Conjective Reduction of a Pair of Indefinite Hermitian Matrices, (Inst. for Interdisciplinary Application of Algebra and Combinatorics (1972), Univ. of California: Univ. of California Santa Barbara)
[122] Trott, G. R., On the canonical form of a nonsingular pencil of Hermitian matrices, Amer. J. Math., 56, 359-371 (1934) · Zbl 0009.24202
[123] Turnbull, H. W., On the equivalence of pencils of Hermitian forms, Proc. London Math. Soc. Ser. 2, 39, 232-248 (1935) · Zbl 0011.28902
[124] Uhlig, F., A Study of the Canonical Form of a Pair of Real Symmetric Matrices and Applications to Pencils and to Pairs of Quadratic Forms (1972), California Inst. of Technology
[125] Uhlig, F., Simultaneous block diagonalization of two real symmetric matrices, Linear Algebra Appl., 7, 281-289 (1973), MR 48, 8530 · Zbl 0291.15010
[126] Uhlig, F., A canonical form for a pair of real symmetric matrices that generate a nonsingular pencil, Linear Algebra Appl., 14, 189-209 (1976), MR 58, 28032 · Zbl 0338.15009
[127] Uhlig, F., On the maximal number of linearly independent real vectors annihilated simultaneously by two real quadratic forms, Pacific J. Math., 49, 543-560 (1973), MR 50, 4620 · Zbl 0291.15012
[128] Uhlig, F., The number of vectors jointly annihilated by two real quadratic forms determines the inertia of matrices in the associated pencil, Pacific J. Math., 49, 537-542 (1973), MR 50, 4619 · Zbl 0291.15011
[129] Uhlig, F., Definite and semidefinite matrices in a real symmetric pencil, Pacific J. Math., 49, 561-568 (1973), MR 50, 4634 · Zbl 0291.15013
[130] Uhlig, F., A Rational Pair Form for a Pair of Symmetric Matrices over an Arbitrary Field \(F\) with char \(F\) ≠ 2 and Applications, (Habilitationsschrift (1976), Univ. Würzburg) · Zbl 0418.15008
[131] Uhlig, F., A recurring theorem about pairs of quadratic forms and extensions: A survey, Linear Algebra Appl., 25, 219-237 (1979), MR 80h:15015 · Zbl 0408.15022
[132] Uhlig, F., A rational canonical pair form for a pair of symmetric matrices over an arbitrary field \(F\) with char \(F\) ≠ 2 and applications to finest simulta neous block diagonalizations, Linear and Multilinear Algebra, 8, 41-67 (1979), MR 80j:15009 · Zbl 0418.15008
[133] Väliaho, H., Note on pencils of matrices, Internat. J. Control, 45, 1487-1488 (1987), MR 88j:15010 · Zbl 0666.93043
[134] Väliaho, H., Determining the inertia of a matrix pencil as a function of the parameter, Linear Algebra Appl., 106, 245-258 (1988), MR 89j:15020 · Zbl 0647.15007
[135] Waterhouse, W., A probable Hasse principle for pencils of quadrics, Trans. Amer. Math. Soc., 242, 297-306 (1978), MR 58, 10914 · Zbl 0394.10013
[136] Waterhouse, W., Pairs of quadratic forms, Invent. Math., 37, 157-164 (1966), MR 55, 265 · Zbl 0337.10015
[137] Waterhouse, W., A conjectured property of Hermitian pencils, Linear Algebra Appl., 51, 173-177 (1983), MR 85d:15013a · Zbl 0516.15006
[138] Waterhouse, W., Real classification of complex quadrics, Linear Algebra Appl., 48, 45-52 (1982), MR 84b:10028 · Zbl 0503.51018
[139] Wegner, K.; Ingraham, M. H., Equivalence of pairs of Hermitian matrices, Bull. Amer. Math. Soc.. Bull. Amer. Math. Soc., The singular case of equivalence of pairs of Hermitian matrices. Bull. Amer. Math. Soc.. Bull. Amer. Math. Soc., The singular case of equivalence of pairs of Hermitian matrices, Bull. Amer. Math. Soc., 40, 533 (1934) · JFM 60.0059.02
[140] Williamson, J., Note on the equivalence of nonsingular pencils of Hermitian matrices, Bull. Amer. Math. Soc., 51, 894-897 (1945), MR 7, 234 · Zbl 0060.03504
[141] Williamson, J., The equivalence of nonsingular pencils of Hermitian matrices in an arbitrary field, Amer. J. Math., 57, 475-490 (1935) · Zbl 0012.00403
[142] Williamson, J., The conjunctive equivalence of pencils of Hermitian and anti-Hermitian matrices, Amer. J. Math., 59, 399-413 (1937) · JFM 63.0036.05
[143] Yaglom, I. M., Quadratic and skew symmetric bilinear forms in a real symplectic space, Trudy Sem. Vektor. i Tensor. Analizu, 8, 364-381 (1950), MR 12, 582 · Zbl 0041.15403
[144] Beauwens, R., Upper eigenvalue bounds for pencils of matrices, Linear Algebra Appl., 62, 87-104 (1984), MR 85i:15020 · Zbl 0575.65029
[145] Elsner, L.; Lancaster, P., The spectral variation of pencils of matrices, J. Comput. Math., 3, 262-274 (1985), MR 87j:15029 · Zbl 0593.15013
[146] Elsner, L.; Sun, J. G., Perturbation theorems for the generalized eigenvalue problem, Linear Algebra Appl., 48, 341-357 (1982), MR 84f:15012 · Zbl 0504.15012
[147] Fox, D., Changes in relative matrix eigenvalues, (Information Linkage between Applied Mathematics and Industry (1979), Academic: Academic New York), 409-420, MR 82a:15008
[148] Kershaw, D., On the existence of positive solutions of Au = λBu, Proc. Edinburgh Math. Soc., 18, 2, 281-285 (1972) · Zbl 0275.15008
[149] Mangasarian, O. L., Perron-Frobenius properties of Ax − λBx, J. Math. Anal. Appl., 36, 86-102 (1971), MR 44, 2773 · Zbl 0224.15010
[150] Othmer, H. G.; Scriven, L. E., On the eigenvalues of the matrix pencil \(A\) + μ \(B\), Z. Angew. Math. Phys., 24, 135-139 (1973), MR 48, 11149 · Zbl 0288.15012
[151] Stewart, G. W., Gershgorin theory for the generalized eigenvalue problem Ax = λBx, Math. Comp., 29, 600-606 (1975) · Zbl 0302.65028
[152] Stewart, G. W., On the sensitivity of the eigenvalue problem Ax = λBx, SIAM J. Numer. Anal., 9, 669-686 (1972), MR 47, 244 · Zbl 0252.65026
[153] Stewart, G. W., Perturbation bounds for the definite generalized eigenvalue problem, Linear Algebra Appl., 23, 69-85 (1979), MR 80c:15007 · Zbl 0407.15012
[154] Stewart, G. W., Perturbation theory for the generalized eigenvalue problem, (Recent Advances in Numerical Analysis (1978), Academic: Academic New York), 193-206, MR 80c:65092 · Zbl 0457.65022
[155] Sun, J. G., Perturbation analysis for the generalized eigenvalue and the generalized singular value problem, (Lecture Notes in Math., 973 (1983), Springer-Verlag: Springer-Verlag New York), 221-244, MR 84c:65009 · Zbl 0513.65016
[156] Sun, J. G., A note on Stewart’s theorem for definite matrix pairs, Linear Algebra Appl., 48, 331-339 (1982), MR 84f:15013 · Zbl 0504.15011
[157] Sun, J. G., Perturbation bounds for the eigenspaces of definite matrix pairs, Acta Math. Sinica, 24, 892-903 (1981), MR 83k:15010 · Zbl 0482.15009
[158] Sun, J. G., The perturbation bounds of generalized eigenvalues of a class of matrix pairs, Math. Numer. Sinica, 4, 23-29 (1982), MR 85h:15021 · Zbl 0537.15005
[159] Sun, J. G., Gerschgorin type theorems and the perturbation of eigenvalues of singular pencils, Math. Numer. Sinica, 7, 253-264 (1985), MR 87e:65024 · Zbl 0579.15015
[160] Sun, J. G., The perturbation bounds for eigenspaces of a definite matrix pair, Numer. Math. Sinica, 41, 321-343 (1983), MR 85c:65045 · Zbl 0487.65021
[161] Beelen, Th., (New Algorithms for Computing the Kronecker Structure of a Pencil with Applications to Systems and Control Theory (1987), Technische Hogeschool Eindhoven), 135, MR 88k:92093 · Zbl 0625.65030
[162] Beelen, Th.; Van Dooren, P., An improved algorithm for the computation of Kronecker’s canonical form of a singular pencil, Linear Algebra Appl., 105, 9-65 (1988), MR 89h:65056 · Zbl 0645.65022
[163] Campbell, S. L.; Kågström, B.; Ruhe, A., Review of Matrix Pencils, Linear Algebra Appl., 62, 287-288 (1984)
[164] Cao, Z. H., A deflation algorithm for the generalized eigenvalue problem, Numer. Math. J. Chinese Univ., 7, 130-140 (1985), MR 87b:65041 · Zbl 0601.65023
[165] Cao, Z. H., On a deflation method for the symmetric generalized eigenvalue problem, Linear Algebra Appl., 92, 187-196 (1987), MR 88h:15015 · Zbl 0632.65037
[166] Cao, Z. H., The canonical form of a matrix pencil and a deflation method for the definite generalized eigenproblem, Numer. Math. J. Chinese Univ., 8, 12-20 (1986), MR 88a:15020 · Zbl 0615.65046
[167] Cao, Z. H., Generalized Rayleigh quotient matrix and block algorithm for solving large sparse symmetric generalized eigenvalue problem, Numer. Math. J. Chinese Univ., 5, 342-348 (1983), MR 86a:65032 · Zbl 0534.65013
[168] Crawford, C. R.; Moon, Y. S., Finding a positive definite linear combination of two symmetric matrices, Linear Algebra Appl., 51, 37-48 (1983), MR 84f:65032 · Zbl 0516.15021
[169] Demmel, J.; Kågström, B., Stably computing the Kronecker structure and reducing subspaces of singular pencils \(A\) − λ \(B\) for uncertain data, (Large Scale Eigenvalue Problems (Oberlech, 1985) (1986), North-Holland Math. Stud. 127: North-Holland Math. Stud. 127 Amsterdam), 283-323, MR 88a:15016 · Zbl 0605.65028
[170] Demmel, J.; Kågström, B., Computing stable eigendecompositions of matrix pencils, Linear Algebra Appl., 88, 139-186 (1987), MR 88j:65083 · Zbl 0627.65032
[171] Demmel, J., The condition number of equivalence transformations that block diagonalize matrix pencils, (Kågström, B.; Ruhe, A., Matrix Pencils, 973 (1983), Springer-Verlag: Springer-Verlag New York), 2-16, MR 84c:65009 · Zbl 0503.65028
[172] Erxiong, J., An algorithm for finding generalized eigenpairs of symmetric definite matrices, Linear Algebra Appl., 132, 65-91 (1990) · Zbl 0703.65022
[173] Gear, C. W.; Petzold, L. R., Differential/algebraic systems and matrix pencils, (Kågström, B.; Ruhe, A., Matrix Pencils, 973 (1983), Springer-Verlag: Springer-Verlag New York), 75-89, MR 84c:65009 · Zbl 0494.65038
[174] Ja’Ja’, J., Optimal evaluations of pairs of bilinear forms, SIAM J. Comput., 8, 443-462 (1979), MR 80e:68109 · Zbl 0418.68045
[175] Ja’Ja’, J., Optimal evaluations of pairs of bilinear forms, (Conference Record of the Tenth Annual ACM Symposium on the Theory of Computing (1978), ACM: ACM New York), 173-183, MR 80j:68032 · Zbl 1282.68115
[176] Kågström, B., On computing the Kronecker canonical form of regular \((A\) − λ \(B)\) pencils, (Matrix Pencils, 973 (1982), Springer-Verlag), 30-57, MR 84c:65009 · Zbl 0542.65021
[177] (Kågström, B.; Ruhe, A., Matrix Pencils. Matrix Pencils, Lecture Notes in Math., 973 (1983), Springer-Verlag: Springer-Verlag New York), MR 84c:65009 · Zbl 0434.65020
[178] Kublanovskaja, V. N., Analysis of singular pencils of matrices, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 70, 291 (1977), MR 58, 19081 · Zbl 0429.65030
[179] Kublanovskaya, V. N., A general approach to the reduction of a regular linear pencil to a pencil of quasitriangular form, Zh. Vychisl. Mat. i Mat. Fiz., 24, 1918 (1984), MR 86m:15008 · Zbl 0581.65025
[180] Kublanovskaya, V. N.; Kon’kova, T. Ja., Solution of the eigenvalue problem for a regular pencil λ \(A_0\) − \(A_i\) with singular matrices, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 70, 291 (1977), MR 58, 24884 · Zbl 0429.65031
[181] Kublanovskaya, V. N., On the solution of the spectral problem for a singular pencil of matrices, Zh. Vychisl. Mat. i Mat. Fiz., 18, 1071 (1978), MR 58, 24889 · Zbl 0434.65019
[182] Kublanovskaya, V. N.; Simonova, V. N., A new algorithm for solution of the generalized eigenvalue problem, (Current Problems in Numerical and Applied Mathematics (Novosibirsk, 1981) (1983), “Nauka” Sibirsk. Otdel: “Nauka” Sibirsk. Otdel Novosibirsk), 106-115, MR 86b:65031 · Zbl 0538.65016
[183] Kublanovskaya, V. N.; Vashenko, T. V., Construction of the fundamental series of solutions of a matrix pencil, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 139, 74-93 (1984), MR 86j:15007 · Zbl 0552.65036
[184] Kublanovskaya, V. N., An approach to the solution of spectral problems for a regular linear pencil, Computational Methods in Linear Algebra, 130-150 (1982), MR 88m:65058
[185] Kublanovskaya, V. N.; Khazanov, V. B., Deflation in spectral problems for matrix pencils, Soviet J. Numer. Anal. Math. Modelling, 2, 15-35 (1987), MR 88f:65057b · Zbl 0825.65033
[186] Kublanovskaya, V. N., An algorithm for the computation of the spectral structure of a singular linear matrix pencil, Chisl. Metody i Voprosy Organiz. Vychisl., 8, 176 (1987), MR 88h:65089 · Zbl 0625.65029
[187] Kublanovskaya, V. N.; Khazanov, V. B., Deflation in spectral problems for matrix pencils, Comput. Processes and Systems, 5, 138-147 (1987), MR 89c:65048 · Zbl 0637.15007
[188] Kublanovskaya, V. N., A certain approach to the solution of spectral problems for pencils of matrices, Computational Methods in Linear Algebra (Shushenskoe, 1979), 37-53 (1980), MR 84d:15012 · Zbl 0519.65021
[189] Kublanovskaya, V. N., An approach to solving the spectral problem of \(A\) − λ \(B\), (Kågström, B.; Ruhe, A., Matrix Pencils, 973 (1983), Springer-Verlag: Springer-Verlag New York), 17-29, MR 84c:65009 · Zbl 0348.65034
[190] Kublanovskaya, V. N., A way of calculating the fundamental series of polynomial solutions and Jordan chains for a singular linear pencil of matrices, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 124, 101-113 (1983), MR 84g:65046 · Zbl 0522.15004
[191] Kublanovskaya, V. N., On the solution of a spectral problem for matrix pencils, Computational Methods in Linear Algebra, 40-50 (1977), MR 81c:15012 · Zbl 0375.65020
[192] Kublanovskaya, V. N., Application of the normalized process to the construction of algorithms for solving spectral problems for matrix pencils, (Proceedings of the Fourth Symposium on Basic Problems of Numerical Mathematics (1978), Charles Univ: Charles Univ Prague), 115-121, MR 81b:65033 · Zbl 0454.15005
[193] Kublanovskaya, V. N., Construction of a canonical basis for matrices and pencils of matrices, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 90, 298-299 (1979), MR 81k:65042 · Zbl 0454.65030
[194] Kublanovskaya, V. N., The eigenvalue problem for a regular linear pencil of nearly degenerate matrices, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 90, 299 (1979), MR 81k:65043 · Zbl 0459.65017
[195] Lin, Wen-Wei, The computation of the Kronecker canonical form of an arbitrary symmetric pencil, Linear Algebra Appl., 103, 41-71 (1988), MR 89k:15017 · Zbl 0657.15009
[196] Lin, W. W., On reducing infinite eigenvalues of regular pencils by a nonequivalence transformations, Linear Algebra Appl., 78, 207-231 (1986), MR 87i:15012 · Zbl 0588.65028
[197] Moler, C.; Stewart, G., An algorithm for the generalized matrix eigenvalue problems, SIAM J. Numer. Math., 10, 241-256 (1973), MR 49, 10135 · Zbl 0253.65019
[198] Peters, G.; Wilkinson, J. H., Eigenvalues of Ax = λBx with band symmetric \(A\) and \(B\), Comput. J., 12, 398-404 (1969), MR 40, 6757 · Zbl 0185.40204
[199] Peters, G.; Wilkinson, J. H., Ax = λBx and the generalized eigenproblem, SIAM J. Numer. Anal., 7, 479-492 (1970), MR 43, 2843 · Zbl 0276.15016
[200] Stewart, G. W., A method for computing the generalized singular value decomposition, (Kågström, B.; Ruhe, A., Matrix Pencils, 973 (1983), Springer-Verlag: Springer-Verlag New York), 207-220, MR 84c:65009 · Zbl 1014.65028
[201] Van Dooren, P., The computation of Kronecker’s canonical form of a singular pencil, Linear Algebra Appl., 27, 103-140 (1979), MR 80g:65042 · Zbl 0416.65026
[202] Van Dooren, P., Reducing subspaces: Definitions, properties and algorithms, (Kågström, B.; Ruhe, A., Matrix Pencils, 973 (1983), Springer-Verlag: Springer-Verlag New York), 58-73, MR 84c:65009 · Zbl 0517.65022
[203] Wilkinson, J. H., Kronecker’s canonical form and the QZ algorithm, Linear Algebra Appl., 28, 285-303 (1979), MR 81a:15015 · Zbl 0458.65022
[204] Crawford, C. R., Bounds for definite matrix pairs, Congr. Numer., 46, 59-64 (1985), MR 86j:15014 · Zbl 0569.15011
[205] Fitzgerald, C.; Horn, R., On the structure of Hermitian symmetric inequalities, J. London Math. Soc., 15, 2, 419-430 (1977), MR 56, 389 · Zbl 0368.15014
[206] Horn, R., On inequalities between Hermitian and symmetric forms, Linear Algebra Appl., 11, 189-218 (1975), MR 51, 12895 · Zbl 0309.15013
[207] Thompson, R. C., Dissipative matrices and related results, Linear Algebra Appl., 11, 155-169 (1975), MR 52, 444 · Zbl 0308.15008
[208] Djoković, D.Ž.; Potera, J.; Winternitz, P.; Zassenhaus, H., Normal forms of elements of classical real and complex Lie and Jordan algebras, J. Math. Phys., 24, 1363-1374 (1983), MR 85g:15018 · Zbl 0544.17013
[209] Gohberg, I.; Lancaster, P.; Rodman, L., Invariant Subspaces of Matrices with Applications (1986), Wiley · Zbl 0608.15004
[210] Hong, Y. P.; Horn, R., On simultaneous reduction of families of matrices to triangular or diagonal forms by unitary congruences, Linear and Multilinear Algebra, 17, 271-288 (1985), MR 87e:15023 · Zbl 0568.15007
[211] Iskovskih, V. A., A counterexample to the Hasse principle for systems of two quadratic forms in five variables, Mat. Zametki, 10, 253-257 (1971), MR 44, 3952 · Zbl 0221.10028
[212] Kippenhahn, R., Über der Wertevorret einer Matrix, Math. Nachr., 6, 193-208 (1951), MR 15, 497
[213] Lee, A., Normal matrix pencils, Period. Math. Hungar., 1, 287-301 (1971), MR 46, 191 · Zbl 0235.15006
[214] Pickert, G., Lineare Algebra, (Algebra und Zahlentheorie (1953), Enzykl. der Math: Enzykl. der Math Wiss., Leipzig), 1-43, MR 15, 497
[215] Pokryzwa, A., On perturbations and the equivalence orbit of a matrix pencil, Linear Algebra Appl., 82, 99-121 (1986), MR 87m:15031 · Zbl 0601.15008
[216] Radon, R., Linear Scharen orthogonaler Matrizen, Abh. Math. Sem. Univ. Hamburg, 1, 1-14 (1922) · JFM 48.0092.06
[217] Riehm, C., The equivalence of bilinear forms, J. Algebra, 31, 45-66 (1974), MR 50, 368 · Zbl 0283.15016
[218] Scharlau, W., Paare alternierender Formen, Math. Z., 147, 13-19 (1970), MR 54, 7505 · Zbl 0304.15008
[219] Shapiro, H., Simultaneous block triangularization and block diagonalization of sets of matrices, Linear Algebra Appl., 25, 129-137 (1979), MR 80e:15009 · Zbl 0401.15008
[220] Wall, G. E., On the conjugacy classes in the unitary, symplectic, and orthogonal groups, J. Austral. Math. Soc., 3, 1-62 (1963), MR 27, 212 · Zbl 0122.28102
[221] Williamson, J., On the algebraic problem concerning the normal forms of linear dynamical systems, Amer. J. Math., 58, 141-163 (1936) · JFM 62.1795.10
[222] Williamson, J., On the normal forms of linear canonical equations in dynamics, Amer. J. Math., 59, 599-617 (1937) · JFM 63.0845.02
[223] Williamson, J., Normal matrices over an arbitrary field of characteristic zero, Amer. J. Math., 61, 335-356 (1939) · JFM 65.0042.02
[224] Zaballa, I., Matrices with prescribed rows and invariant factors, Linear Algebra Appl., 87, 113-145 (1987), MR 88d:15015 · Zbl 0632.15003
[225] Zaballa, I., Interlacing inequalities and control theory, Linear Algebra Appl., 101, 9-31 (1988), MR 89c:93011 · Zbl 0673.93025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.