×

Complete families of commuting functions for coisotropic Hamiltonian actions. (English) Zbl 1475.17039

The present paper deals with Hamiltonian actions of algebraic groups on affine manifolds focussing on the non-reductive case. As it is known, a Poisson algebra is a Lie algebra endowed with a associative product in such a way that the Lie and associative products are compatible via the Leibnitz identity. More precisely, in this paper, given an algebraic group \(G\) over a field \(\mathbb F\) of characteristic zero with \({\mathfrak g}= \mathrm{Lie}(G)\) then the dual space \(\mathfrak g^*\) is a Poisson variety and each irreducible \(G\)-subvariety \(X\subset\mathfrak g^*\) carries the induced Poisson structure. One proves that there is a set \(\{f_1, \cdots, f_l\}\subset \mathbb F[X]\) of algebraically independent polynomial functions, which are pairwise commuting with respect to the Poisson bracket, and such that \(l = (\dim X + \operatorname{tr.deg} \mathbb F(X)^G)/2)\). Finally several applications of this result are discussed to complete integrability of Hamiltonian systems on symplectic Hamiltonian \(G\)-varieties of corank zero and \(2\).

MSC:

17B63 Poisson algebras
53D17 Poisson manifolds; Poisson groupoids and algebroids

References:

[1] Bolsinov, A. V., A completeness criterion for a family of functions in involution constructed by the argument shift method, Sov. Math., Dokl., 38, 1, 161-165 (1989) · Zbl 0676.58027
[2] Bolsinov, A. V., Complete families of polynomials in involution in Poisson algebras: a proof of the Mishchenko-Fomenko conjecture, Tr. Semin. Vector Tensor Anal., MSU, 26, 87-109 (2005), (in Russian) · Zbl 1133.37326
[3] Charbonnel, J.-Y.; Moreau, A., The index of centralizers of elements of reductive Lie algebras, Doc. Math., 15, 387-421 (2010) · Zbl 1223.17014
[4] de Graaf, W., Computing with nilpotent orbits in simple Lie algebras of exceptional type, LMS J. Comput. Math., 11, 280-297 (2008) · Zbl 1222.17003
[5] Fomenko, A. T.; Trofimov, V. V., Integrable Systems on Lie Algebras and Symmetric Spaces, Advanced Studies in Contemporary Mathematics, vol. 2 (1988), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers New York · Zbl 0659.58018
[6] Guillemin, V.; Sternberg, S., Multiplicity-free spaces, J. Differential Geom., 19, 31-56 (1984) · Zbl 0548.58017
[7] Huckleberry, A. T.; Wurzbacher, T., Multiplicity-free complex manifolds, Math. Ann., 286, 261-280 (1990) · Zbl 0765.32016
[8] Knop, F., Weylgruppe und Momentabbildung, Invent. Math., 99, 1-23 (1990) · Zbl 0726.20031
[9] Knop, F.; Van Steirteghem, B., Classification of smooth affine spherical varieties, Transform. Groups, 11, 3, 495-516 (2006) · Zbl 1120.14042
[10] Manakov, S. V., A remark on the integration of the Euler equations of the dynamics of an \(n\)-dimensional rigid body, Funct. Anal. Appl., 10, 4, 93-94 (1976), (in Russian) · Zbl 0343.70003
[11] Mikityuk, I. V., On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces, Math. USSR, Sb., 57, 527-546 (1987) · Zbl 0652.70012
[12] Mishchenko, A. S.; Fomenko, A. T., Euler equation on finite-dimensional Lie groups, Math. USSR, Izv., 12, 371-389 (1978) · Zbl 0405.58031
[13] Mishchenko, A. S.; Fomenko, A. T., Generalised Liouville method of integration of Hamiltonian systems, Funct. Anal. Appl., 12, 113-121 (1978) · Zbl 0405.58028
[14] Perelomov, A. M., Integrable Systems of Classical Mechanics and Lie Algebras (1990), Birkhäuser: Birkhäuser Basel · Zbl 0717.70003
[15] Sadetov, S. T., A proof of the Mishchenko-Fomenko conjecture, Dokl. Akad. Nauk. Dokl. Akad. Nauk, Dokl. Math., 70, 1, 634-638 (2004), English translation in · Zbl 1378.37101
[16] Vinberg, E. B., Commutative homogeneous spaces and coisotropic actions, UMN. UMN, Russian Math. Surveys, 56, 1, 1-60 (2001), English translation in · Zbl 0996.53034
[17] Vinberg, E. B., Commutative homogeneous spaces of Heisenberg type, Trans. Moscow Math. Soc., 64, 47-80 (2003) · Zbl 1068.22015
[18] Yakimova, O., The centralisers of nilpotent elements in classical Lie algebras, Funct. Anal. Appl., 40, 1, 42-51 (2006) · Zbl 1152.17001
[19] Yakimova, O. S., Principal Gelfand pairs, Transform. Groups, 11, 2, 305-335 (2006) · Zbl 1108.22015
[20] Yakimova, O. S., Gelfand Pairs, Bonner Math. Schriften, 374 (2005), Rheinischen Friedrich-Wilhelms-Universität Bonn, Dissertation · Zbl 1073.22006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.