×

Holography of dyonic dilaton black branes. (English) Zbl 1291.83069

Summary: We study black branes carrying both electric and magnetic charges in Einstein-Maxwell theory coupled to a dilaton-axion in asymptotically anti de Sitter space. After reviewing and extending earlier results for the case of electrically charged branes, we characterise the thermodynamics of magnetically charged branes. We then focus on dyonic branes in theories which enjoy an \(\mathrm{SL}(2,\mathbb R)\) electric-magnetic duality. Using \(\mathrm{SL}(2,\mathbb R)\), we are able to generate solutions with arbitrary charges starting with the electrically charged solution, and also calculate transport coefficients. These solutions all exhibit a Lifshitz-like near-horizon geometry. The system behaves as expected for a charged fluid in a magnetic field, with non-vanishing Hall conductance and vanishing DC longitudinal conductivity at low temperatures. Its response is characterised by a cyclotron resonance at a frequency proportional to the magnetic field, for small magnetic fields. Interestingly, the DC Hall conductance is related to the attractor value of the axion. We also study the attractor flows of the dilaton-axion, both in cases with and without an additional modular-invariant scalar potential. The flows exhibit intricate behaviour related to the duality symmetry. Finally, we briefly discuss attractor flows in more general dilaton-axion theories which do not enjoy \(\mathrm{SL}(2,\mathbb R)\) symmetry.

MSC:

83C22 Einstein-Maxwell equations
83C57 Black holes
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T13 Yang-Mills and other gauge theories in quantum field theory
81T17 Renormalization group methods applied to problems in quantum field theory
81T10 Model quantum field theories
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
82C70 Transport processes in time-dependent statistical mechanics

References:

[1] S. Sachdev and M. Mueller, Quantum criticality and black holes, arXiv:0810.3005 [SPIRES].
[2] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav.26 (2009) 224002 [arXiv:0903.3246] [SPIRES]. · Zbl 1181.83003 · doi:10.1088/0264-9381/26/22/224002
[3] C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys.A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES]. · Zbl 1180.82218
[4] J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys.2010 (2010) 723105 [arXiv:0909.0518] [SPIRES]. · Zbl 1216.81118
[5] G.T. Horowitz, Introduction to Holographic Superconductors, arXiv:1002.1722 [SPIRES]. · Zbl 1246.83009
[6] K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of Charged Dilaton Black Holes, JHEP08 (2010) 078 [arXiv:0911.3586] [SPIRES]. · Zbl 1290.83038 · doi:10.1007/JHEP08(2010)078
[7] S. Sachdev, Holographic metals and the fractionalized Fermi liquid, arXiv:1006.3794 [SPIRES].
[8] S. Kachru, A. Karch and S. Yaida, Holographic Lattices, Dimers and Glasses, Phys. Rev.D 81 (2010) 026007 [arXiv:0909.2639] [SPIRES].
[9] E. D’Hoker and P. Kraus, Charged Magnetic Brane Solutions in AdS5and the fate of the third law of thermodynamics, JHEP03 (2010) 095 [arXiv:0911.4518] [SPIRES]. · Zbl 1271.83047 · doi:10.1007/JHEP03(2010)095
[10] E. D’Hoker and P. Kraus, Holographic Metamagnetism, Quantum Criticality and Crossover Behavior, JHEP05 (2010) 083 [arXiv:1003.1302] [SPIRES]. · Zbl 1287.83029 · doi:10.1007/JHEP05(2010)083
[11] S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev.D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].
[12] E. Keski-Vakkuri and P. Kraus, Quantum Hall Effect in AdS/CFT, JHEP09 (2008) 130 [arXiv:0805.4643] [SPIRES]. · Zbl 1245.81310 · doi:10.1088/1126-6708/2008/09/130
[13] S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev.B 76 (2007) 144502 [arXiv:0706.3215] [SPIRES].
[14] S.A. Hartnoll and C.P. Herzog, Ohm’s Law at strong coupling: S duality and the cyclotron resonance, Phys. Rev.D 76 (2007) 106012 [arXiv:0706.3228] [SPIRES].
[15] P. Koroteev and M. Libanov, On Existence of Self-Tuning Solutions in Static Braneworlds without Singularities, JHEP02 (2008) 104 [arXiv:0712.1136] [SPIRES]. · doi:10.1088/1126-6708/2008/02/104
[16] M. Taylor, Non-relativistic holography, arXiv:0812.0530 [SPIRES].
[17] U.H. Danielsson and L. Thorlacius, Black holes in asymptotically Lifshitz spacetime, JHEP03 (2009) 070 [arXiv:0812.5088] [SPIRES]. · doi:10.1088/1126-6708/2009/03/070
[18] R.B. Mann, Lifshitz Topological Black Holes, JHEP06 (2009) 075 [arXiv:0905.1136] [SPIRES]. · doi:10.1088/1126-6708/2009/06/075
[19] D.-W. Pang, A Note on Black Holes in Asymptotically Lifshitz Spacetime, arXiv:0905.2678 [SPIRES]. · Zbl 1297.83021
[20] G. Bertoldi, B.A. Burrington and A. Peet, Black Holes in asymptotically Lifshitz spacetimes with arbitrary critical exponent, Phys. Rev.D 80 (2009) 126003 [arXiv:0905.3183] [SPIRES].
[21] G. Bertoldi, B.A. Burrington and A.W. Peet, Thermodynamics of black branes in asymptotically Lifshitz spacetimes, Phys. Rev.D 80 (2009) 126004 [arXiv:0907.4755] [SPIRES].
[22] E.J. Brynjolfsson, U.H. Danielsson, L. Thorlacius and T. Zingg, Holographic Superconductors with Lifshitz Scaling, J. Phys.A 43 (2010) 065401 [arXiv:0908.2611] [SPIRES]. · Zbl 1192.82087
[23] K. Balasubramanian and J. McGreevy, An analytic Lifshitz black hole, Phys. Rev.D 80 (2009) 104039 [arXiv:0909.0263] [SPIRES].
[24] S.-J. Sin, S.-S. Xu and Y. Zhou, Holographic Superconductor for a Lifshitz fixed point, arXiv:0909.4857 [SPIRES]. · Zbl 1247.81414
[25] R.-G. Cai, Y. Liu and Y.-W. Sun, A Lifshitz Black Hole in Four Dimensional R2Gravity, JHEP10 (2009) 080 [arXiv:0909.2807] [SPIRES]. · doi:10.1088/1126-6708/2009/10/080
[26] T. Azeyanagi, W. Li and T. Takayanagi, On String Theory Duals of Lifshitz-like Fixed Points, JHEP06 (2009) 084 [arXiv:0905.0688] [SPIRES]. · doi:10.1088/1126-6708/2009/06/084
[27] E. Perlmutter, Domain Wall Holography for Finite Temperature Scaling Solutions, arXiv:1006.2124 [SPIRES]. · Zbl 1294.81124
[28] G. Bertoldi, B.A. Burrington and A.W. Peet, Thermal behavior of charged dilatonic black branes in AdS and UV completions of Lifshitz-like geometries, arXiv:1007.1464 [SPIRES].
[29] G.T. Horowitz and M.M. Roberts, Zero Temperature Limit of Holographic Superconductors, JHEP11 (2009) 015 [arXiv:0908.3677] [SPIRES]. · doi:10.1088/1126-6708/2009/11/015
[30] C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, arXiv:1005.4690 [SPIRES]. · Zbl 1294.81178
[31] M. Cadoni, G. D’Appollonio and P. Pani, Phase transitions between Reissner-Nordstrom and dilatonic black holes in 4D AdS spacetime, JHEP03 (2010) 100 [arXiv:0912.3520] [SPIRES]. · Zbl 1271.83043 · doi:10.1007/JHEP03(2010)100
[32] C.-M. Chen and D.-W. Pang, Holography of Charged Dilaton Black Holes in General Dimensions, JHEP06 (2010) 093 [arXiv:1003.5064] [SPIRES]. · Zbl 1290.83035 · doi:10.1007/JHEP06(2010)093
[33] B.-H. Lee, S. Nam, D.-W. Pang and C. Park, Conductivity in the anisotropic background, arXiv:1006.0779 [SPIRES].
[34] B.-H. Lee, D.-W. Pang and C. Park, Strange Metallic Behavior in Anisotropic Background, JHEP07 (2010) 057 [arXiv:1006.1719] [SPIRES]. · Zbl 1290.81127 · doi:10.1007/JHEP07(2010)057
[35] Y. Liu and Y.-W. Sun, Holographic Superconductors from Einstein-Maxwell-Dilaton Gravity, JHEP07 (2010) 099 [arXiv:1006.2726] [SPIRES]. · Zbl 1290.82035 · doi:10.1007/JHEP07(2010)099
[36] K. Balasubramanian and J. McGreevy, The particle number in Galilean holography, arXiv:1007.2184 [SPIRES]. · Zbl 1214.81239
[37] K. Goldstein, N. Iizuka, R.P. Jena and S.P. Trivedi, Non-supersymmetric attractors, Phys. Rev.D 72 (2005) 124021 [hep-th/0507096] [SPIRES].
[38] A.D. Shapere, S. Trivedi and F. Wilczek, Dual dilaton dyons, Mod. Phys. Lett.A6 (1991) 2677 [SPIRES]. · Zbl 1020.83623
[39] A. Sen, Strong -weak coupling duality in four-dimensional string theory, Int. J. Mod. Phys.A9 (1994) 3707 [hep-th/9402002] [SPIRES]. · Zbl 0985.81635
[40] S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev.D 76 (2007) 066001 [arXiv:0704.1160] [SPIRES].
[41] M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP07 (1998) 023 [hep-th/9806087] [SPIRES]. · Zbl 0958.81083 · doi:10.1088/1126-6708/1998/07/023
[42] V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys.208 (1999) 413 [hep-th/9902121] [SPIRES]. · Zbl 0946.83013 · doi:10.1007/s002200050764
[43] E. Witten, SL(2,Z ) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [SPIRES]. · Zbl 1160.81457
[44] A. Zee, Quantum Hall Fluids, Lect. Notes Phys.456 (1995) 99 [cond-mat/9501022]. · doi:10.1007/BFb0113369
[45] A.D. Shapere and F. Wilczek, Selfdual Models with Theta Terms, Nucl. Phys.B 320 (1989) 669 [SPIRES]. · doi:10.1016/0550-3213(89)90016-3
[46] C.A. Lütken and G.G. Ross, Duality in the quantum Hall system, Phys. Rev.B 45 (1992) 11837.
[47] S. Kivelson, D.-H. Lee and S.-C. Zhang, Global phase diagram in the quantum Hall effect, Phys. Rev.B 46 (1992) 2223 [SPIRES].
[48] C.P. Burgess and B.P. Dolan, Particle-vortex duality and the modular group: Applications to the quantum Hall effect and other 2 - D systems, Phys. Rev.B 63 (2001) 155309 [hep-th/0010246] [SPIRES].
[49] B.P. dolan, Modular symmetry and fractional charges in N =2 supersymmetric Yang-Mills and the quantum Hall effect, SIGMA3 (2007) 010 [hep-th/0611282] [SPIRES]. · Zbl 1139.11024
[50] J.L. Davis, P. Kraus and A. Shah, Gravity Dual of a Quantum Hall Plateau Transition, JHEP11 (2008) 020 [arXiv:0809.1876] [SPIRES]. · doi:10.1088/1126-6708/2008/11/020
[51] M. Fujita, W. Li, S. Ryu and T. Takayanagi, Fractional Quantum Hall Effect via Holography: Chern-Simons, Edge States and Hierarchy, JHEP06 (2009) 066 [arXiv:0901.0924] [SPIRES]. · doi:10.1088/1126-6708/2009/06/066
[52] J. Alanen, E. Keski-Vakkuri, P. Kraus and V. Suur-Uski, AC Transport at Holographic Quantum Hall Transitions, JHEP11 (2009) 014 [arXiv:0905.4538] [SPIRES]. · doi:10.1088/1126-6708/2009/11/014
[53] D. Bak and S.-J. Rey, Composite Fermion Metals from Dyon Black Holes and S-Duality, JHEP09 (2010) 032 [arXiv:0912.0939] [SPIRES]. · Zbl 1291.83122 · doi:10.1007/JHEP09(2010)032
[54] O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Quantum Hall Effect in a Holographic Model, arXiv:1003.4965 [SPIRES]. · Zbl 1291.81294
[55] E. Witten and J. Bagger, Quantization of Newton’s Constant in Certain Supergravity Theories, Phys. Lett.B 115 (1982) 202 [SPIRES].
[56] J.H. Horne and G.W. Moore, Chaotic coupling constants, Nucl. Phys.B 432 (1994) 109 [hep-th/9403058] [SPIRES]. · Zbl 1020.81780 · doi:10.1016/0550-3213(94)90595-9
[57] M. Edalati, J.I. Jottar and R.G. Leigh, Transport Coefficients at Zero Temperature from Extremal Black Holes, JHEP01 (2010) 018 [arXiv:0910.0645] [SPIRES]. · Zbl 1269.81124 · doi:10.1007/JHEP01(2010)018
[58] M.F. Paulos, Transport coefficients, membrane couplings and universality at extremality, JHEP02 (2010) 067 [arXiv:0910.4602] [SPIRES]. · Zbl 1270.81144 · doi:10.1007/JHEP02(2010)067
[59] G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N =4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett.87 (2001) 081601 [hep-th/0104066] [SPIRES]. · doi:10.1103/PhysRevLett.87.081601
[60] S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP04 (2010) 120 [arXiv:0912.1061] [SPIRES]. · Zbl 1272.83098 · doi:10.1007/JHEP04(2010)120
[61] K. Balasubramanian and K. Narayan, Lifshitz spacetimes from AdS null and cosmological solutions, JHEP08 (2010) 014 [arXiv:1005.3291] [SPIRES]. · Zbl 1291.83195 · doi:10.1007/JHEP08(2010)014
[62] P.A. Lee and T.V. Ramakrishnan, Disordered electronic systems, Rev. Mod. Phys.57 (1985) 287 [SPIRES]. · doi:10.1103/RevModPhys.57.287
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.