×

A novel insulator by holographic Q-lattices. (English) Zbl 1388.83295

Summary: We construct a bulk geometry with Q-lattice structure, which is implemented by two gauge fields and a coupling between the lattice and the Maxwell field. This gravity dual model can describe a novel insulator which exhibits some key features analogous to Mott insulator. In particular, a hard gap in insulating phase as well as vanishing DC conductivity can be simultaneously achieved. In addition, we discuss the non-Drude behavior of the optical conductivity in low frequency region in insulating phase, which exhibits some novel characteristics different from ordinary Mott insulator.

MSC:

83C47 Methods of quantum field theory in general relativity and gravitational theory

References:

[1] N.F. Mott, Metal-insulator transitions, Taylor and Francis, London U.K. (1974).
[2] M. Imada, A. Fujimori and Y. Tokura, Metal-insulator transitions, Rev. Mod. Phys.70 (1998) 1039 [INSPIRE]. · doi:10.1103/RevModPhys.70.1039
[3] V. Dobrosavljevic, Introduction to metal-insulator transitions, arXiv:1112.6166.
[4] D.N. Basov et al., Electrodynamics of correlated electron materials, Rev. Mod. Phys.83 (2011) 471 [arXiv:1106.2309]. · doi:10.1103/RevModPhys.83.471
[5] N.F. Mott, The basis of the theory of electron metals, with special reference to the transition metals, Proc. Phys. Soc. London, Ser.A 49 (1937) 72. · doi:10.1088/0959-5309/49/4S/308
[6] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE]. · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[7] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE]. · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[8] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE]. · Zbl 0914.53048
[9] A. Donos and S.A. Hartnoll, Interaction-driven localization in holography, Nature Phys.9 (2013) 649 [arXiv:1212.2998] [INSPIRE]. · doi:10.1038/nphys2701
[10] A. Donos, B. Goutéraux and E. Kiritsis, Holographic metals and insulators with helical symmetry, JHEP09 (2014) 038 [arXiv:1406.6351] [INSPIRE]. · doi:10.1007/JHEP09(2014)038
[11] A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP04 (2014) 040 [arXiv:1311.3292] [INSPIRE]. · doi:10.1007/JHEP04(2014)040
[12] A. Donos and J.P. Gauntlett, Novel metals and insulators from holography, JHEP06 (2014) 007 [arXiv:1401.5077] [INSPIRE]. · doi:10.1007/JHEP06(2014)007
[13] Y. Ling, C. Niu, J. Wu, Z. Xian and H.-b. Zhang, Metal-insulator transition by holographic charge density waves, Phys. Rev. Lett.113 (2014) 091602 [arXiv:1404.0777] [INSPIRE]. · doi:10.1103/PhysRevLett.113.091602
[14] B. Goutéraux, Charge transport in holography with momentum dissipation, JHEP04 (2014) 181 [arXiv:1401.5436] [INSPIRE]. · doi:10.1007/JHEP04(2014)181
[15] M. Baggioli and O. Pujolàs, Electron-phonon interactions, metal-insulator transitions and holographic massive gravity, Phys. Rev. Lett.114 (2015) 251602 [arXiv:1411.1003] [INSPIRE]. · doi:10.1103/PhysRevLett.114.251602
[16] E. Kiritsis and J. Ren, On holographic insulators and supersolids, JHEP09 (2015) 168 [arXiv:1503.03481] [INSPIRE]. · doi:10.1007/JHEP09(2015)168
[17] Y. Ling, P. Liu, C. Niu and J.-P. Wu, Building a doped Mott system by holography, Phys. Rev.D 92 (2015) 086003 [arXiv:1507.02514] [INSPIRE].
[18] A. Donos, J.P. Gauntlett and C. Pantelidou, Semi-local quantum criticality in string/M-theory, JHEP03 (2013) 103 [arXiv:1212.1462] [INSPIRE]. · Zbl 1342.83361 · doi:10.1007/JHEP03(2013)103
[19] A. Donos and J.P. Gauntlett, Holographic charge density waves, Phys. Rev.D 87 (2013) 126008 [arXiv:1303.4398] [INSPIRE].
[20] M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys.B 558 (1999) 96 [hep-th/9903214] [INSPIRE]. · Zbl 0951.83033 · doi:10.1016/S0550-3213(99)00419-8
[21] C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP11 (2010) 151 [arXiv:1005.4690] [INSPIRE]. · Zbl 1294.81178 · doi:10.1007/JHEP11(2010)151
[22] B. Gouteraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, JHEP12 (2011) 036 [arXiv:1107.2116] [INSPIRE]. · Zbl 1306.81237 · doi:10.1007/JHEP12(2011)036
[23] B. Gouteraux and E. Kiritsis, Quantum critical lines in holographic phases with (un)broken symmetry, JHEP04 (2013) 053 [arXiv:1212.2625] [INSPIRE]. · doi:10.1007/JHEP04(2013)053
[24] E. Mefford and G.T. Horowitz, Simple holographic insulator, Phys. Rev.D 90 (2014) 084042 [arXiv:1406.4188] [INSPIRE].
[25] Y. Ling, P. Liu, C. Niu, J.-P. Wu and Z.-Y. Xian, Holographic entanglement entropy close to quantum phase transitions, arXiv:1502.03661 [INSPIRE]. · Zbl 1398.81165
[26] N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev.D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].
[27] A. Donos and J.P. Gauntlett, Superfluid black branes in AdS4 × S7, JHEP06 (2011) 053 [arXiv:1104.4478] [INSPIRE]. · Zbl 1298.81270 · doi:10.1007/JHEP06(2011)053
[28] S. Fujimoto and N. Kawakami, Exact Drude weight for the one-dimensional Hubbard model at finite temperatures, J. Phys.A 31 (1998) 465. · Zbl 0953.82013
[29] H. Nakano, Y. Takahashi and M. Imada, Drude weight of the two-dimensional Hubbard model — Reexamination of finite-size effect in exact diagonalization study, J. Phys. Soc. Jpn.76 (2007) 034705. · doi:10.1143/JPSJ.76.034705
[30] K.-Y. Kim, K.K. Kim, Y. Seo and S.-J. Sin, Coherent/incoherent metal transition in a holographic model, JHEP12 (2014) 170 [arXiv:1409.8346] [INSPIRE]. · doi:10.1007/JHEP12(2014)170
[31] X.-H. Ge, Y. Ling, C. Niu and S.-J. Sin, Thermoelectric conductivities, shear viscosity and stability in an anisotropic linear axion model, Phys. Rev.D 92 (2015) 106005 [arXiv:1412.8346] [INSPIRE].
[32] R.A. Davison, B. Goutéraux and S.A. Hartnoll, Incoherent transport in clean quantum critical metals, JHEP10 (2015) 112 [arXiv:1507.07137] [INSPIRE]. · Zbl 1388.81933 · doi:10.1007/JHEP10(2015)112
[33] R.A. Davison and B. Goutéraux, Dissecting holographic conductivities, JHEP09 (2015) 090 [arXiv:1505.05092] [INSPIRE]. · Zbl 1388.83220 · doi:10.1007/JHEP09(2015)090
[34] Y. Ling, P. Liu, C. Niu, J.-P. Wu and Z.-Y. Xian, Holographic superconductor on Q-lattice, JHEP02 (2015) 059 [arXiv:1410.6761] [INSPIRE]. · doi:10.1007/JHEP02(2015)059
[35] E. Kiritsis and L. Li, Holographic competition of phases and superconductivity, JHEP01 (2016) 147 [arXiv:1510.00020] [INSPIRE]. · Zbl 1388.83279 · doi:10.1007/JHEP01(2016)147
[36] M. Baggioli and M. Goykhman, Under the dome: doped holographic superconductors with broken translational symmetry, JHEP01 (2016) 011 [arXiv:1510.06363] [INSPIRE]. · doi:10.1007/JHEP01(2016)011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.