×

Topological insulators from the perspective of non-commutative geometry and index theory. (English) Zbl 1361.82037

The paper is devoted to the development of the mathematical model of topological insulators (TIs), based on index theory. TIs present solid state structures of independent electrons with Fermi level, locating in a mobility gap and topologically non-trivial Fermi projection, which cannot be deformed similarly to a normal insulator. The Fermi projections have non-trivial topological invariants (given, for example, in terms of winding numbers and Chern numbers). At the boundaries of a topological material, there are delocalized surface modes, that make the insulator conducting. First, a short description of the physics and the underlying quantum mechanical models of the TIs are presented with a subsequent overview of recent mathematical results on them. Into the framework of tight-binding approximation, an important physical phenomenon linked to random potentials and random quantum Hamiltonians in general is discussed, namely the Anderson localization. A projection identified with a vector bundle over the torus and topological invariant is the Chern number, associated to this vector bundle. The winding number is equal to the Chern number, defining the bulk-boundary correspondence (BBC). This forms a \(K\)-theoretical mathematical description, applied to disordered systems. From the mathematical viewpoint, the aim is first to distinguish and classify Fermi projections with time-reversal symmetry (TRS) that is achieved by using the \(K\)-theory with symmetries, which follows the \(KR\)-theory. The second aim is then to calculate the invariants and to analyze the physical effects that go along with these invariants. This is achieved by considering particle-hole symmetry (PHS) and combining the TRS and PHS, leading to a chiral symmetry (CHS). The fermionic one-particle bulk Hamiltonians are studied by using associated observable algebras. Then \(K\)-theory is attracted to analyze homotopy classes of projections in the algebras and is used to distinguish topological phases. One group of \(K\)-theory is used to classify \(D\)-dimensional fermionic systems with CHS. Two complex \(K\)-groups allow a classification of the Fermi projections of gapped covariant systems without further symmetry and an approximate CHS. The paper calculates these groups and discusses their structures. The non-commutative analysis is used for the definition of topological invariants and their main properties. It is shown that the strong invariants and the associated indices can be used as a phase label in the localization regime. Then, another key feature of topological insulators is treated which shows that the invariants are responsible for different effects linked to defects. Due to this, BBC is considered based on the half-space Hamiltonian. Two examples (quantization of boundary currents and anomalous surface quantum Hall effect) are considered as consequences of the general theorem on the duality of pairing, associated with the exact sequences of algebras. Reversal symmetry and PHS are considered; both of which require a real structure, allowing to define the complex conjugate of an operator. Then, the bound states attached to particular types of point defects in TIs are considered. In particular, the spectral flow in a 2D system with odd TRS (i.e., in a quantum spin Hall system) is discussed. Finally, the use of spin Chern numbers is discussed, being the topological invariants for distinguishing phases of systems, having exact symmetries (like TRS and PHS).

MSC:

82D20 Statistical mechanics of solids
19K35 Kasparov theory (\(KK\)-theory)
19K56 Index theory
19L10 Riemann-Roch theorems, Chern characters
81R60 Noncommutative geometry in quantum theory
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
81V70 Many-body theory; quantum Hall effect

References:

[1] Aizenman, M., Molchanov, S.: Localization at large disorder and at extreme energies: an elementary derivation. Comment. Phys.-Math. 157, 245-278 (1993) · Zbl 0782.60044 · doi:10.1007/BF02099760
[2] Altland, A., Zirnbauer, M.R.: Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55, 1142-1161 (1997) · doi:10.1103/PhysRevB.55.1142
[3] Andersson, A.: Index pairings for \(Rn{\mathbb{R}}^n\)-actions and Rieffel deformations. Preprint arXiv:1406.4078 (2014)
[4] Atiyah, M.F., Singer, I.M.: Index theory for skew-adjoint Fredholm operators. Publ. Math. 37, 5-26 (1969) · Zbl 0194.55503 · doi:10.1007/BF02684885
[5] Avila, J.C., Schulz-Baldes, H., Villegas-Blas, C.: Topological invariants of edge states for periodic two-dimensional models. Math. Phys. Anal. Geom. 16, 136-170 (2013) · Zbl 1271.81210 · doi:10.1007/s11040-012-9123-9
[6] Avron, J., Seiler, R., Simon, B.: The charge deficiency, charge transport and comparison of dimensions. Commun. Math. Phys. 159, 399-422 (1994) · Zbl 0822.47056 · doi:10.1007/BF02102644
[7] Bellissard, J.; Dorlas, T. (ed.); Hugenholtz, M. (ed.); Winnink, M. (ed.), K-theory of C∗-algebras in solid state physics, No. 257, 99-156 (1986), Berlin · Zbl 0612.46066
[8] Bellissard, J.; Ziesche, W. (ed.); Weller, P. (ed.), Ordinary quantum Hall effect and non-commutative cohomology, No. 16 (1988), Leipzig
[9] Bellissard, J., van Elst, A., Schulz-Baldes, H.: The non-commutative geometry of the quantum Hall effect. J. Math. Phys. 35, 5373-5451 (1994) · Zbl 0824.46086 · doi:10.1063/1.530758
[10] Blackadar, B.: K-Theory for Operator Algebras. Mathematical Sciences Research Institute Publications, vol. 5. Cambridge University Press Cambridge (1998) · Zbl 0913.46054
[11] Boersema, J.L., Loring, T.A.: \(KK\)-theory for real C∗-algebras via unitary elements with symmetries. arXiv:1504.03284 · Zbl 1358.46068
[12] Bourne, C., Carey, A.L., Rennie, A.: The bulk-edge correspondence for the quantum Hall effect in Kasparov theory. Lett. Math. Phys. 105, 1253-1273 (2015) · Zbl 1325.81199 · doi:10.1007/s11005-015-0781-y
[13] Bourne, C., Carey, A.L., Rennie, A.: A noncommutative framework for topological insulators. Rev. Math. Phys. 28, 1650004 (2016) · Zbl 1364.81269 · doi:10.1142/S0129055X16500045
[14] Bourne, C., Kellendonk, J., Rennie, A.: The \(KK \)-theoretic bulk-edge correspondence for topological insulators. Preprint arXiv:1604.02337 · Zbl 1372.82023
[15] Carey, A.L., Gayral, V., Rennie, A., Sukochev, F.A.: Index Theory for Locally Compact Noncommutative Geometries. Mem. AMS. (2014) · Zbl 1314.46081
[16] Carey, A.L., Phillips, J., Schulz-Baldes, H.: Spectral flow for skew-adjoint Fredholm operators. Preprint arXiv:1604.06994 · Zbl 1472.58017
[17] Connes, A.: Non-commutative differential geometry. Publ. Math. 62, 41-144 (1985) · Zbl 0592.46056 · doi:10.1007/BF02698807
[18] Connes, A.: Noncommutative Geometry. Academic Press, San Diego (1994) · Zbl 0818.46076
[19] De Nittis, G., Gomi, K.: Classification of “real” Bloch-bundles: topological quantum systems of type AI. J. Geom. Phys. 86, 303-338 (2014) · Zbl 1316.57019 · doi:10.1016/j.geomphys.2014.07.036
[20] De Nittis, G., Gomi, K.: Classification of “Quaternionic” Bloch-bundles. Commun. Math. Phys. 339, 1-55 (2015) · Zbl 1326.57047 · doi:10.1007/s00220-015-2390-0
[21] De Nittis, G., Lein, M.: Topological polarization in graphene-like systems. J. Phys. A, Math. Theor. 46, 385001 (2013) · Zbl 1277.82082 · doi:10.1088/1751-8113/46/38/385001
[22] De Nittis, G., Schulz-Baldes, H.: Spectral flows associated to flux tubes. Ann. Henri Poincaré 17, 1-35 (2016) · Zbl 1333.81448 · doi:10.1007/s00023-014-0394-5
[23] De Nittis, G., Drabkin, M., Schulz-Baldes, H.: Localization and Chern numbers for weakly disordered BdG operators. Markov Process. Relat. Fields 21, 463-482 (2015)
[24] Elliott, G. A., On the K-theory of the C∗-algebra generated by a projective representation of a torsion-free discrete Abelian group, Neptun, 1980, Boston · Zbl 0542.46030
[25] Essin, A.M., Gurarie, V.: Bulk-boundary correspondence of topological insulators from their Green’s functions. Phys. Rev. B 84, 125132 (2011) · doi:10.1103/PhysRevB.84.125132
[26] Fiorenza, D., Monaco, D., Panati, G.: Z \(2Z_2\) invariants of topological insulators as geometric obstructions. Commun. Math. Phys. 343, 1115-1157 (2016) · Zbl 1346.81158 · doi:10.1007/s00220-015-2552-0
[27] Freed, D.S., Moore, G.W.: Twisted equivariant matter. Ann. Henri Poincaré 14, 1927-2023 (2013) · Zbl 1286.81109 · doi:10.1007/s00023-013-0236-x
[28] Fröhlich, J., Spencer, T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88, 151-184 (1983) · Zbl 0519.60066 · doi:10.1007/BF01209475
[29] Gracia-Bondía, J.M., Várilly, J.C., Figueroa, H.: Elements of Noncommutative Geometry. Birkhäuser, Boston (2001) · Zbl 0958.46039 · doi:10.1007/978-1-4612-0005-5
[30] Graf, G.M., Porta, M.: Bulk-edge correspondence for two-dimensional topological insulators. Commun. Math. Phys. 324, 851-895 (2013) · Zbl 1291.82120 · doi:10.1007/s00220-013-1819-6
[31] Grossmann, J., Schulz-Baldes, H.: Index pairings in presence of symmetries with applications to topological insulators. Commun. Math. Phys. 343, 477-513 (2016) · Zbl 1348.82083 · doi:10.1007/s00220-015-2530-6
[32] Hatsugai, Y.: Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71, 3697-3700 (1993) · Zbl 0972.81712 · doi:10.1103/PhysRevLett.71.3697
[33] Kane, C.L., Mele, E.J.: Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005) · doi:10.1103/PhysRevLett.95.226801
[34] Kane, C.L., Mele, E.J.: Z(2) topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005) · doi:10.1103/PhysRevLett.95.146802
[35] Karoubi, M.: \(KK\)-Theory: An Introduction. Springer, Berlin (1978) · Zbl 0382.55002 · doi:10.1007/978-3-540-79890-3
[36] Katsura, H., Koma, T.: The Z \(2Z_2\) index of disordered topological insulators with time reversal symmetry. J. Math. Phys. 57, 021903 (2016) · Zbl 1341.82043 · doi:10.1063/1.4942494
[37] Kellendonk, J.: On the C∗-algebraic approach to topological phases for insulators. Preprint arXiv:1509.06271 · Zbl 1382.82045
[38] Kellendonk, J., Richter, T., Schulz-Baldes, H.: Edge current channels and Chern numbers in the integer quantum Hall effect. Rev. Math. Phys. 14, 87-119 (2002) · Zbl 1037.81106 · doi:10.1142/S0129055X02001107
[39] Kennedy, R., Zirnbauer, M.: Bott periodicity for Z \(2{\mathbb{Z}}_2\) symmetric ground states of gapped free-fermion systems. Commun. Math. Phys. 342, 909-963 (2016) · Zbl 1346.81159 · doi:10.1007/s00220-015-2512-8
[40] Kitaev, A., Periodic table for topological insulators and superconductors, No. 1134, 22-30 (2009) · Zbl 1180.82221
[41] Knez, I., Rettner, C.T., Yang, S.H., Parkin, S.S., Du, L., Du, R.R., Sullivan, G.: Observation of edge transport in the disordered regime of topologically insulating InAs/GaSb quantum wells. Phys. Rev. Lett. 112, 026602 (2014) · doi:10.1103/PhysRevLett.112.026602
[42] Kubota, Y.: Controlled topological phases and bulk-edge correspondence. Preprint arXiv:1511.05314 · Zbl 1357.82013
[43] Lawson, H.B., Michelson, M.L.: Spin Geometry. Princeton University Press, Princeton (1989) · Zbl 0688.57001
[44] Li, D., Kaufmann, R.M., Wehefritz-Kaufmann, B.: Topological insulators and K-theory. Preprint arXiv:1510.08001 · Zbl 1361.82005
[45] Loring, T.A.: K-theory and pseudospectra for topological insulators. Ann. Phys. 356, 383-416 (2015) · Zbl 1343.46063 · doi:10.1016/j.aop.2015.02.031
[46] Loring, T.A., Hastings, M.B.: Topological insulators and C∗-algebras: theory and numerical practice. Ann. Phys. 326, 1699-1759 (2011) · Zbl 1235.19003 · doi:10.1016/j.aop.2010.12.013
[47] Ma, E.Y., et al.: Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry. Nature Commun. 6, 7252 (2015) · doi:10.1038/ncomms8252
[48] Macris, N.: On the equality of edge and bulk conductance in the integer quantum Hall effect: microscopic analysis. Unpublished manuscript (2003) · Zbl 1271.81210
[49] Mathai, V., Thiang, G.C.: T-duality simplifies bulk-boundary correspondence. Commun. Math. Phys. (2016) · Zbl 1353.82068
[50] Phillips, J.: Self-adjoint Fredholm operators and spectral flow. Can. Math. Bull. 39, 460-467 (1996) · Zbl 0878.19001 · doi:10.4153/CMB-1996-054-4
[51] Pimsner, M., Voiculescu, D.: Exact sequences for K-groups of certain cross-products of C∗ algebras. J. Oper. Theory 4, 93-118 (1980) · Zbl 0474.46059
[52] Prodan, E.: Robustness of the spin-Chern number. Phys. Rev. B 80, 125327 (2009) · doi:10.1103/PhysRevB.80.125327
[53] Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Insulators: From \(KK\)-Theory to Physics. Springer, Berlin (2016) · Zbl 1342.82002 · doi:10.1007/978-3-319-29351-6
[54] Prodan, E., Leung, B., Bellissard, J.: The non-commutative n \(n\)-th Chern number (n≥0)\((n\geq 0)\). J. Phys. A, Math. Theor. 46, 485202 (2013) · Zbl 1290.82016 · doi:10.1088/1751-8113/46/48/485202
[55] Qi, X.L., Zhang, S.-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057-1111 (2011) · doi:10.1103/RevModPhys.83.1057
[56] Qi, X.L., Hughes, T.L., Zhang, S.-C.: Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008) · doi:10.1103/PhysRevB.78.195424
[57] Rammal, R., Bellissard, J.: An algebraic semi-classical approach to Bloch electrons in a magnetic field. J. Phys. (Paris) 51, 1803-1830 (1990) · doi:10.1051/jphys:0199000510170180300
[58] Rordam, M., Larsen, F., Laustsen, N.: An Introduction to K-Theory for C∗-Algebras. Cambridge University Press, Cambridge (2000) · Zbl 0967.19001 · doi:10.1017/CBO9780511623806
[59] Ryu, S., Schnyder, A.P., Furusaki, A., Ludwig, A.W.W.: Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12, 065010 (2010) · doi:10.1088/1367-2630/12/6/065010
[60] Schnyder, A.P., Ryu, S., Furusaki, A., Ludwig, A.W.W.: Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008) · doi:10.1103/PhysRevB.78.195125
[61] Schulz-Baldes, H.: Persistence of spin edge currents in disordered quantum spin Hall systems. Commun. Math. Phys. 324, 589-600 (2013) · Zbl 1278.82065 · doi:10.1007/s00220-013-1814-y
[62] Schulz-Baldes, H.: Z \(2\mathbb{Z}_2\)-Indices and factorization properties of odd symmetric Fredholm operators. Doc. Math. 20, 1481-1500 (2015) · Zbl 1341.47014
[63] Schulz-Baldes, H., Teufel, S.: Orbital polarization and magnetization for independent particles in disordered media. Commun. Math. Phys. 319, 649-681 (2013) · Zbl 1271.82022 · doi:10.1007/s00220-012-1639-0
[64] Stone, C.-K., Chiu, M., Roy, A.: Symmetries, dimensions and topological insulators: the mechanism behind the face of the Bott clock. J. Phys. A, Math. Theor. 44, 045001 (2011) · Zbl 1209.82049 · doi:10.1088/1751-8113/44/4/045001
[65] Streda, P.: Theory of quantized Hall conductivity in two dimensions. J. Phys. C 15, L717-721 (1982) · doi:10.1088/0022-3719/15/22/005
[66] Su, W.P., Schrieffer, J.R., Heeger, A.J.: Soliton excitations in polyacetylene. Phys. Rev. B 22, 2099-2111 (1980) · doi:10.1103/PhysRevB.22.2099
[67] Thiang, G.C.: On the K-theoretic classification of topological phases of matter. Ann. Henri Poincaré 17, 757-794 (2016) · Zbl 1344.81144 · doi:10.1007/s00023-015-0418-9
[68] Wegge-Olsen, N.E.: K-Theory and C∗-Algebras. Oxford University Press, Oxford (1993) · Zbl 0780.46038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.