×

Spectral flow for skew-adjoint Fredholm operators. (English) Zbl 1472.58017

In the present paper the authors constructed a \(\mathbb{Z}_{2}\)-valued spectral flow for paths of skew-adjoint Fredholms on a real Hilbert space. First the authors defined the \(\mathbb{Z}_{2}\)-valued spectral flow associated to a straight line path in finite dimensions. The definition simply counts the number of orientation changes of the eigenfunctions at eigenvalue crossings through 0 along the path. Then the authors gave the analytic approach to the complex spectral flow for paths of self-adjoint Fredholm operators on a complex Hilbert space, this allows to show relatively directly that the \(\mathbb{Z}_{2}\)-valued spectral flow can be calculated, similarly to the complex spectral flow, as a sum of index type contributions, provided the appropriate notion of index is used. Finally an index formula is proved which connects the \(\mathbb{Z}_{2}\)-valued spectral flow of certain paths in the skew-adjoint operators on a real Hilbert space to the \(\mathbb{Z}_{2}\)-index of an associated Toeplitz operator on the complexification. At the end the authors illustrated the theory by an explicit example given by a matrix-valued shift operator which can be considered to be the analogue in real Hilbert space of the standard Toeplitz operator in the complex case. This example is the canonical non-trivial example of \(\mathbb{Z}_{2}\)-valued spectral flow.

MSC:

58J30 Spectral flows
47A53 (Semi-) Fredholm operators; index theories

References:

[1] A. Altland and M. Zirnbauer, Non-standard symmetry classes in mesoscopic normalsuperconducting hybrid structures. Phys. Rev. B 55 (1997), 1142-1161.
[2] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. III. Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 1, 71-99.MR 0397799 Zbl 0325.58015 Spectral flow for skew-adjoint Fredholm operators169 · Zbl 0325.58015
[3] M. F. Atiyah and I. M. Singer, Index theory for skew-adjoint Fredholm operators. Inst. Hautes Études Sci. Publ. Math. 37 (1969), 5-26.MR 0285033 Zbl 0194.55503 · Zbl 0194.55503
[4] M.-T. Benameur, A. L. Carey, J. Phillips, A. Rennie, F. A. Sukochev, and K. P. Wojciechowski, An analytic approach to spectral flow in von Neumann algebras. In B. Booß-Bavnbek, S. Klimek, M. Lesch and W. Zhang (eds.), Analysis, geometry and topology of elliptic operators. Papers from the Workshop “Krzysztof Wojciechowski—50 years” held in Roskilde, May 2005. World Scientific, Hackensack, N.J., 2006, 297-352.MR 2246773 Zbl 1119.58016 · Zbl 1119.58016
[5] J. M. Borwein and A. L. Dontchev, On the Bartle-Graves theorem. Proc. Amer. Math. Soc. 131 (2003), no. 8, 2553-2560.MR 1974655 Zbl 1017.49021 · Zbl 1017.49021
[6] A. L. Carey and D. M. O’Brien, Automorphisms of the infinite dimensional Clifford algebra and the Atiyah-Singer mod 2 index. Topology 22 (1983), no. 4, 437-448. MR 0715249 Zbl 0532.47011 · Zbl 0532.47011
[7] A. Carey and J. Phillips, Unbounded Fredholm modules and spectral flow. Canad. J. Math. 50 (1998), no. 4, 673-718.MR 1638603 Zbl 0915.46063 · Zbl 0915.46063
[8] G. De Nittis and H. Schulz-Baldes, Spectral flows of dilations of Fredholm operators. Canad. Math. Bull. 58 (2015), no. 1, 51-68.MR 3303207 Zbl 1354.19004 · Zbl 1354.19004
[9] G. De Nittis and H. Schulz-Baldes, Spectral flows associated to flux tubes. Ann. Henri Poincaré 17 (2016), no. 1, 1-35.MR 3437823 Zbl 1333.81448 · Zbl 1333.81448
[10] E. Getzler, The Odd Chern character in cyclic homology and spectral flow. Topology 32 (1993), no. 3, 489-507.MR 1231957 Zbl 0801.46088 · Zbl 0801.46088
[11] J. Grossmann and H. Schulz-Baldes, Index pairings in presence of symmetries with applications to topological insulators. Comm. Math. Phys. 343 (2016), no. 2, 477-513. MR 3477345 Zbl 1348.82083 · Zbl 1348.82083
[12] T. Kato, Perturbation theory for linear operators. Die Grundlehren der mathematischen Wissenschaften, 132. Springer-Verlag New York, New York, 1966.MR 0203473 Zbl 0148.12601 · Zbl 0148.12601
[13] H. B. Lawson and M.-L. Michelsohn, Spin geometry. Princeton Mathematical Series, 38. Princeton University Press, Princeton, N.J., 1989.MR 1031992 Zbl 0688.57001 · Zbl 0688.57001
[14] M. Lesch, The uniqueness of the spectral flow on spaces of unbounded self-adjoint Fredholm operators. In B. Booß-Bavnbek, G. Grubb, and K. P. Wojciechowski (eds.), Spectral geometry of manifolds with boundary and decomposition of manifolds. Proceedings of the workshop held at Roskilde University, Roskilde, August 6-9, 2003. Contemporary Mathematics, 366. American Mathematical Society, Providence, R.I., 2005, 193-224.MR 2114489 Zbl 1085.58019 · Zbl 1085.58019
[15] V. S. Perera, Real valued spectral flow in a type II1factor. Houston J. Math. 25 (1999), no. 1, 55-66. Based on the Ph.D. Thesis with same title, Purdue University, West Lafayette, IN, 1993. 86 pp.MR 1675375 MR 2689749(Ph.D. thesis) Zbl 0966.46042 170A. L. Carey, J. Phillips, and H. Schulz-Baldes · Zbl 0966.46042
[16] J. Phillips, Self-adjoint Fredholm operators and spectral flow. Canad. Math. Bull. 39 (1996), no. 4, 460-467.MR 1426691 Zbl 0878.19001 · Zbl 0878.19001
[17] J. Phillips, Spectral flow in Type I and Type II factors – a new Approach. In J. J. R. Cuntz and M. Khalkhali (eds.), Cyclic cohomology and noncommutative geometry. Proceedings of the workshop held in Waterloo, ON, June 14-18, 1995. Fields Institute Communications, 17. American Mathematical Society, Providence, R.I., 1997, 137-153.MR 1478707 Zbl 0891.46044 · Zbl 0891.46044
[18] E. Prodan and H. Schulz-Baldes, Bulk and boundary invariants for complex topological insulators. From K-theory to physics. Mathematical Physics Studies. Springer, Cham, 2016.MR 3468838 Zbl 1342.82002 · Zbl 1342.82002
[19] G. Ruget, À propos des cycles analytiques de dimension infinie. Invent. Math. 8 (1969), 267-312.MR 0273064 Zbl 0188.25102 · Zbl 0188.25102
[20] H. Schulz-Baldes and S. Teufel, Orbital polarization and magnetization for independent particles in disordered media. Comm. Math. Phys. 319 (2013), no. 3, 649-681. MR 3040371 Zbl 1271.82022 · Zbl 1271.82022
[21] E. Witten, Fermion path integrals and topological phases. Rev. Mod. Phys. 88 (2016), 035001. Received September 21
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.