×

Index theory for locally compact noncommutative geometries. (English) Zbl 1314.46081

Mem. Am. Math. Soc. 1085, v, 127 p. (2014).
Summary: Spectral triples for nonunital algebras model locally compact spaces in noncommutative geometry. In the present text, we prove the local index formula for spectral triples over nonunital algebras, without the assumption of local units in our algebra. This formula has been successfully used to calculate index pairings in numerous noncommutative examples. The absence of any other effective method of investigating index problems in geometries that are genuinely noncommutative, particularly in the nonunital situation, was a primary motivation for this study and we illustrate this point with two examples in the text.
In order to understand what is new in our approach in the commutative setting we prove an analogue of the Gromov-Lawson relative index formula (for Dirac type operators) for even dimensional manifolds with bounded geometry, without invoking compact supports. For odd dimensional manifolds our index formula appears to be completely new. As we prove our local index formula in the framework of semifinite noncommutative geometry we are also able to prove, for manifolds of bounded geometry, a version of Atiyah’s \(L^2\)-index Theorem for covering spaces. We also explain how to interpret the McKean-Singer formula in the nonunital case. To prove the local index formula, we develop an integration theory compatible with a refinement of the existing pseudodifferential calculus for spectral triples. We also clarify some aspects of index theory for nonunital algebras.

MSC:

46L87 Noncommutative differential geometry
46L51 Noncommutative measure and integration
46L80 \(K\)-theory and operator algebras (including cyclic theory)
19K35 Kasparov theory (\(KK\)-theory)
19K56 Index theory
58J05 Elliptic equations on manifolds, general theory
58J20 Index theory and related fixed-point theorems on manifolds
58J30 Spectral flows
58J32 Boundary value problems on manifolds
58J42 Noncommutative global analysis, noncommutative residues

References:

[1] M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974), Soc. Math. France, Paris, 1976, pp. 43-72. Astérisque, No. 32-33. · Zbl 0323.58015
[2] J. P. Aubin, Méthodes explicites de l’optimisation, Dunod, Paris, 1982. · Zbl 0498.90051
[3] Moulay-Tahar Benameur, Alan L. Carey, John Phillips, Adam Rennie, Fyodor A. Sukochev, and Krzysztof P. Wojciechowski, An analytic approach to spectral flow in von Neumann algebras, Analysis, geometry and topology of elliptic operators, World Sci. Publ., Hackensack, NJ, 2006, pp. 297-352. · Zbl 1119.58016
[4] Moulay-Tahar Benameur and Thierry Fack, Type II non-commutative geometry. I. Dixmier trace in von Neumann algebras, Adv. Math. 199 (2006), no. 1, 29-87. · Zbl 1092.46050 · doi:10.1016/j.aim.2004.11.001
[5] Bruce Blackadar, \(K\)-theory for operator algebras, 2nd ed., Mathematical Sciences Research Institute Publications, vol. 5, Cambridge University Press, Cambridge, 1998. · Zbl 0913.46054
[6] A. M. Bikchentaev, On a property of \(L_p\)-spaces on semifinite von Neumann algebras, Mat. Zametki 64 (1998), no. 2, 185-190 (Russian, with Russian summary); English transl., Math. Notes 64 (1998), no. 1-2, 159-163 (1999). · Zbl 0927.46046 · doi:10.1007/BF02310299
[7] Jonathan Block and Jeffrey Fox, Asymptotic pseudodifferential operators and index theory, Geometric and topological invariants of elliptic operators (Brunswick, ME, 1988) Contemp. Math., vol. 105, Amer. Math. Soc., Providence, RI, 1990, pp. 1-32. · Zbl 0704.58048 · doi:10.1090/conm/105/1047274
[8] Lawrence G. Brown and Hideki Kosaki, Jensen’s inequality in semi-finite von Neumann algebras, J. Operator Theory 23 (1990), no. 1, 3-19. · Zbl 0718.46026
[9] Ulrich Bunke, A \(K\)-theoretic relative index theorem and Callias-type Dirac operators, Math. Ann. 303 (1995), no. 2, 241-279. · Zbl 0835.58035 · doi:10.1007/BF01460989
[10] A. L. Carey, V. Gayral, A. Rennie, and F. A. Sukochev, Integration on locally compact noncommutative spaces, J. Funct. Anal. 263 (2012), no. 2, 383-414. · Zbl 1251.46036 · doi:10.1016/j.jfa.2012.04.015
[11] A. L. Carey and K. C. Hannabuss, Temperature states on gauge groups, Ann. Inst. H. Poincaré Phys. Théor. 57 (1992), no. 3, 219-257 (English, with English and French summaries). · Zbl 0769.46052
[12] Alan Carey and John Phillips, Unbounded Fredholm modules and spectral flow, Canad. J. Math. 50 (1998), no. 4, 673-718. · Zbl 0915.46063 · doi:10.4153/CJM-1998-038-x
[13] Alan Carey and John Phillips, Spectral flow in Fredholm modules, eta invariants and the JLO cocycle, \(K\)-Theory 31 (2004), no. 2, 135-194. · Zbl 1051.19004 · doi:10.1023/B:KTHE.0000022922.68170.61
[14] Alan L. Carey, John Phillips, Adam Rennie, and Fyodor A. Sukochev, The Hochschild class of the Chern character for semifinite spectral triples, J. Funct. Anal. 213 (2004), no. 1, 111-153. · Zbl 1058.19002 · doi:10.1016/j.jfa.2003.11.016
[15] Alan L. Carey, John Phillips, Adam Rennie, and Fyodor A. Sukochev, The local index formula in semifinite von Neumann algebras. I. Spectral flow, Adv. Math. 202 (2006), no. 2, 451-516. · Zbl 1118.46060 · doi:10.1016/j.aim.2005.03.011
[16] Alan L. Carey, John Phillips, Adam Rennie, and Fyodor A. Sukochev, The local index formula in semifinite von Neumann algebras. II. The even case, Adv. Math. 202 (2006), no. 2, 517-554. · Zbl 1101.46045 · doi:10.1016/j.aim.2005.03.010
[17] Alan L. Carey, John Phillips, Adam Rennie, and Fyodor A. Sukochev, The Chern character of semifinite spectral triples, J. Noncommut. Geom. 2 (2008), no. 2, 141-193. · Zbl 1157.46045 · doi:10.4171/JNCG/18
[18] Alan Carey, John Phillips, and Fyodor Sukochev, Spectral flow and Dixmier traces, Adv. Math. 173 (2003), no. 1, 68-113. · Zbl 1015.19003 · doi:10.1016/S0001-8708(02)00015-4
[19] Gilles Carron, Théorèmes de l’indice sur les variétés non-compactes, J. Reine Angew. Math. 541 (2001), 81-115 (French, with English summary). · Zbl 1014.58012 · doi:10.1515/crll.2001.096
[20] Alain Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 257-360. · Zbl 0592.46056
[21] Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. · Zbl 0818.46076
[22] Alain Connes, Geometry from the spectral point of view, Lett. Math. Phys. 34 (1995), no. 3, 203-238. · Zbl 1042.46515 · doi:10.1007/BF01872777
[23] Alain Connes and Henri Moscovici, Cyclic cohomology, the Novikov conjecture and hyperbolic groups, Topology 29 (1990), no. 3, 345-388. · Zbl 0759.58047 · doi:10.1016/0040-9383(90)90003-3
[24] A. Connes and J. Cuntz, Quasi homomorphismes, cohomologie cyclique et positivité, Comm. Math. Phys. 114 (1988), no. 3, 515-526 (French, with English summary). · Zbl 0664.46067
[25] A. Connes and H. Moscovici, The local index formula in noncommutative geometry, Geom. Funct. Anal. 5 (1995), no. 2, 174-243. · Zbl 0960.46048 · doi:10.1007/BF01895667
[26] Thierry Fack and Hideki Kosaki, Generalized \(s\)-numbers of \(\tau \)-measurable operators, Pacific J. Math. 123 (1986), no. 2, 269-300. · Zbl 0617.46063
[27] V. Gayral, J. M. Gracia-Bondía, B. Iochum, T. Schücker, and J. C. Várilly, Moyal planes are spectral triples, Comm. Math. Phys. 246 (2004), no. 3, 569-623. · Zbl 1084.58008 · doi:10.1007/s00220-004-1057-z
[28] V. Gayral, R. Wulkenhaar, The spectral action for Moyal plane with harmonic propagation, to appear in J. Noncommut. Geom. · Zbl 1295.46054
[29] Mikhael Gromov and H. Blaine Lawson Jr., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. 58 (1983), 83-196 (1984). · Zbl 0538.53047
[30] José M. Gracia-Bondía, Joseph C. Várilly, and Héctor Figueroa, Elements of noncommutative geometry, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Boston, Inc., Boston, MA, 2001. · Zbl 0958.46039
[31] Peter Greiner, An asymptotic expansion for the heat equation, Arch. Rational Mech. Anal. 41 (1971), 163-218. · Zbl 0238.35038
[32] Nigel Higson, The local index formula in noncommutative geometry, Contemporary developments in algebraic \(K\)-theory, ICTP Lect. Notes, XV, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, pp. 443-536 (electronic). · Zbl 1032.46002 · doi:10.1007/b94118
[33] Nigel Higson and John Roe, Analytic \(K\)-homology, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. Oxford Science Publications. · Zbl 0968.46058
[34] Lars Hörmander, The analysis of linear partial differential operators. III, Classics in Mathematics, Springer, Berlin, 2007. Pseudo-differential operators; Reprint of the 1994 edition. · Zbl 1115.35005
[35] J. Kaad, R. Nest, A. Rennie, KK-Theory and spectral flow in von Neumann algebras, to appear in J. K-Theory. · Zbl 1260.19001
[36] G. G. Kasparov, The operator K-functor and extensions of C^*-algebras, Math. USSR Izv. 16 (1981), 513-572. · Zbl 0464.46054
[37] Yu. A. Kordyukov, \(L^p\)-theory of elliptic differential operators on manifolds of bounded geometry, Acta Appl. Math. 23 (1991), no. 3, 223-260. · Zbl 0743.58030
[38] Marcelo Laca and Sergey Neshveyev, KMS states of quasi-free dynamics on Pimsner algebras, J. Funct. Anal. 211 (2004), no. 2, 457-482. · Zbl 1060.46049 · doi:10.1016/j.jfa.2003.08.008
[39] H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. · Zbl 0688.57001
[40] Jean-Louis Loday, Cyclic homology, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1998. Appendix E by María O. Ronco; Chapter 13 by the author in collaboration with Teimuraz Pirashvili. · Zbl 0885.18007
[41] J. Milnor, A note on curvature and fundamental group, J. Differential Geometry 2 (1968), 1-7. · Zbl 0162.25401
[42] David Pask and Adam Rennie, The noncommutative geometry of graph \(C^*\)-algebras. I. The index theorem, J. Funct. Anal. 233 (2006), no. 1, 92-134. · Zbl 1099.46047 · doi:10.1016/j.jfa.2005.07.009
[43] David Pask, Adam Rennie, and Aidan Sims, The noncommutative geometry of \(k\)-graph \(C^*\)-algebras, J. K-Theory 1 (2008), no. 2, 259-304. · Zbl 1167.46036 · doi:10.1017/is007011015jkt013
[44] Denis Perrot, The equivariant index theorem in entire cyclic cohomology, J. K-Theory 3 (2009), no. 2, 261-307. · Zbl 1171.19003 · doi:10.1017/is008004027jkt047
[45] John Phillips, Spectral flow in type I and II factors-a new approach, Cyclic cohomology and noncommutative geometry (Waterloo, ON, 1995), Fields Inst. Commun., vol. 17, Amer. Math. Soc., Providence, RI, 1997, pp. 137-153. · Zbl 0891.46044
[46] John Phillips and Iain Raeburn, An index theorem for Toeplitz operators with noncommutative symbol space, J. Funct. Anal. 120 (1994), no. 2, 239-263. · Zbl 0815.47033 · doi:10.1006/jfan.1994.1032
[47] Raphaël Ponge, A new short proof of the local index formula and some of its applications, Comm. Math. Phys. 241 (2003), no. 2-3, 215-234. · Zbl 1191.58006 · doi:10.1007/s00220-003-0915-4
[48] Iain Raeburn and Dana P. Williams, Morita equivalence and continuous-trace \(C^*\)-algebras, Mathematical Surveys and Monographs, vol. 60, American Mathematical Society, Providence, RI, 1998. · Zbl 0922.46050
[49] A. Rennie, Smoothness and locality for nonunital spectral triples, \(K\)-Theory 28 (2003), no. 2, 127-165. · Zbl 1027.46088 · doi:10.1023/A:1024523203609
[50] Adam Rennie, Summability for nonunital spectral triples, \(K\)-Theory 31 (2004), no. 1, 71-100. · Zbl 1052.46055 · doi:10.1023/B:KTHE.0000021311.27770.e8
[51] John Roe, An index theorem on open manifolds. I, II, J. Differential Geom. 27 (1988), no. 1, 87-113, 115-136. · Zbl 0657.58041
[52] John Roe, A note on the relative index theorem, Quart. J. Math. Oxford Ser. (2) 42 (1991), no. 167, 365-373. · Zbl 0746.19009 · doi:10.1093/qmath/42.1.365
[53] Nigel Higson and John Roe , Surveys in noncommutative geometry, Clay Mathematics Proceedings, vol. 6, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2006. · Zbl 1102.46001
[54] Larry B. Schweitzer, A short proof that \(M_n(A)\) is local if \(A\) is local and Fréchet, Internat. J. Math. 3 (1992), no. 4, 581-589. · Zbl 0804.46054 · doi:10.1142/S0129167X92000266
[55] M. A. Shubin, Spectral theory of elliptic operators on noncompact manifolds, Astérisque 207 (1992), 5, 35-108. Méthodes semi-classiques, Vol. 1 (Nantes, 1991). · Zbl 0793.58039
[56] Barry Simon, Trace ideals and their applications, 2nd ed., Mathematical Surveys and Monographs, vol. 120, American Mathematical Society, Providence, RI, 2005. · Zbl 1074.47001
[57] M. Takesaki, Theory of operator algebras. II, Encyclopaedia of Mathematical Sciences, vol. 125, Springer-Verlag, Berlin, 2003. Operator Algebras and Non-commutative Geometry, 6. · Zbl 1059.46031
[58] François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. · Zbl 0171.10402
[59] B. Vaillant, Indextheorie für Überlagerungen, Masters thesis, Bonn, 1997.
[60] Charlotte Wahl, Index theory for actions of compact Lie groups on \(C^*\)-algebras, J. Operator Theory 63 (2010), no. 1, 217-242. · Zbl 1199.58016
[61] Raimar Wulkenhaar, Non-compact spectral triples with finite volume, Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, pp. 617-648. · Zbl 1222.58023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.