×

Continuity and estimates of the Liouville heat kernel with applications to spectral dimensions. (English) Zbl 1353.60073

Summary: The Liouville Brownian motion (LBM), recently introduced by C. Garban et al. [Ann. Probab. 44, No. 4, 3076–3110 (2016; Zbl 1393.60015)] and in a weaker form also by N. Berestycki [Ann. Inst. Henri Poincaré, Probab. Stat. 51, No. 3, 947–964 (2015; Zbl 1325.60125)], is a diffusion process evolving in a planar random geometry induced by the Liouville measure \(M_\gamma \), formally written as \(M_\gamma (dz)=e^{\gamma X(z)-{\gamma^2} \mathbb E[X(z)^2]/2}\, dz\), \(\gamma \in (0,2)\), for a (massive) Gaussian free field \(X\). It is an \(M_\gamma \)-symmetric diffusion defined as the time change of the two-dimensional Brownian motion by the positive continuous additive functional with Revuz measure \(M_\gamma \). In this paper we provide a detailed analysis of the heat kernel \(p_t(x,y)\) of the LBM. Specifically, we prove its joint continuity, a locally uniform sub-Gaussian upper bound of the form \(p_t(x,y)\leq C_{1} t^{-1} \log (t^{-1}) \exp \bigl (-C_{2}((|x-y|^{\beta}\wedge 1)/t)^{\frac{1}{\beta -1}}\bigr )\) for \(t\in \bigl (0,\frac{1}{2}\bigr ]\) for each \(\beta >\frac{1}{2}(\gamma +2)^2\), and an on-diagonal lower bound of the form \(p_{t}(x,x)\geq C_{3}t^{-1}\bigl (\log (t^{-1})\bigr )^{-\eta}\) for \(t\in (0,t_{\eta}(x)]\), with \(t_{\eta}(x)\in \bigl (0,\frac{1}{2}\bigr ]\) heavily dependent on \(x\), for each \(\eta >18\) for \(M_{\gamma}\)-almost every \(x\). As applications, we deduce that the pointwise spectral dimension equals 2 \(M_\gamma \)-a.e. and that the global spectral dimension is also 2.

MSC:

60J60 Diffusion processes
60J65 Brownian motion
60J35 Transition functions, generators and resolvents
60J55 Local time and additive functionals
60J45 Probabilistic potential theory
60G15 Gaussian processes
60K37 Processes in random environments

References:

[1] Ambjørn, J., Boulatov, D., Nielsen, J., Rolf, J., Watabiki, Y.: The spectral dimension of \[22\] D quantum gravity. J. High Energy Phys. (2), Paper 10 (1998, electronic) · Zbl 0955.83005
[2] Bakry, D., Coulhon, T., Ledoux, M., Saloff-Coste, L.: Sobolev inequalities in disguise. Indiana Univ. Math. J. 44(4), 1033-1074 (1995) · Zbl 0857.26006 · doi:10.1512/iumj.1995.44.2019
[3] Barlow, M.T.: Analysis on the Sierpinski carpet. Analysis and geometry of metric measure spaces, CRM Proc. Lecture Notes, vol. 56, pp. 27-53. Amer. Math. Soc, Providence (2013) · Zbl 1280.28009
[4] Berestycki, N.: Diffusion in planar Liouville quantum gravity. Ann. Inst. Henri Poincaré Probab. Stat. 51(3), 947-964 (2015) · Zbl 1325.60125 · doi:10.1214/14-AIHP605
[5] Berestycki, N., Garban, C., Rhodes, R., Vargas, V.: KPZ formula derived from Liouville heat kernel. arXiv:1406.7280 (2014, preprint) · Zbl 1356.60119
[6] Chen, Z.-Q., Fukushima, M.: Symmetric Markov Processes, Time Change, and Boundary Theory. London Mathematical Society Monographs Series, vol. 35. Princeton University Press, Princeton (2012) · Zbl 1253.60002
[7] Coulhon, T.: Ultracontractivity and Nash type inequalities. J. Funct. Anal. 141(2), 510-539 (1996) · Zbl 0887.58009 · doi:10.1006/jfan.1996.0140
[8] Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1989) · Zbl 0699.35006 · doi:10.1017/CBO9780511566158
[9] Davies, E.B.: Spectral Theory and Differential Operators. Cambridge Studies in Advanced Mathematics, vol. 42. Cambridge University Press, Cambridge (1995) · Zbl 0893.47004 · doi:10.1017/CBO9780511623721
[10] Davies, E.B.: Linear Operators and Their Spectra. Cambridge Studies in Advanced Mathematics, vol. 106. Cambridge University Press, Cambridge (2007) · Zbl 1138.47001 · doi:10.1017/CBO9780511618864
[11] Dudley, R.M.: Real Analysis and Probability. Cambridge Studies in Advanced Mathematics, vol. 74. Cambridge University Press, Cambridge (2002) · Zbl 1023.60001 · doi:10.1017/CBO9780511755347
[12] Duplantier, B., Sheffield, S.: Liouville quantum gravity and KPZ. Invent. Math. 185(2), 333-393 (2011) · Zbl 1226.81241 · doi:10.1007/s00222-010-0308-1
[13] Feller, W.: An Introduction to Probability Theory and its Applications, vol. II, 2nd edn. Wiley, New York (1971) · Zbl 0219.60003
[14] Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, second revised and extended edition. de Gruyter Studies in Mathematics, vol. 19. Walter de Gruyter & Co, Berlin (2011) · Zbl 1227.31001
[15] Garban, C.: Quantum gravity and the KPZ formula [after Duplantier-Sheffield]. In: Séminaire Bourbaki volume 2011/2012 exposés 1043-1058. Astérisque, 352:Exp. No. 1052, ix, 315-354 (2013) · Zbl 1295.83034
[16] Garban, C., Rhodes, R., Vargas, V.: Liouville Brownian motion. arXiv:1301.2876v2 (2013, preprint) · Zbl 1393.60015
[17] Garban, C., Rhodes, R., Vargas, V.: Liouville Brownian motion. Ann. Probab. (2014, preprint, to appear) · Zbl 1334.60175
[18] Garban, C., Rhodes, R., Vargas, V.: On the heat kernel and the Dirichlet form of Liouville Brownian motion. Electron. J. Probab. 19(96), 1-25 (2014) · Zbl 1334.60175 · doi:10.1155/2014/839204
[19] Grigor’yan, A., Kajino, N.: Localized upper bounds of heat kernels for diffusions via a multiple Dynkin-Hunt formula. Trans. Am. Math. Soc. (2015, preprint, to appear) · Zbl 1387.60121
[20] Kahane, J.-P.: Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9(2), 105-150 (1985) · Zbl 0596.60041
[21] Kajino, N.: Spectral asymptotics for Laplacians on self-similar sets. J. Funct. Anal. 258(4), 1310-1360 (2010) · Zbl 1232.31004 · doi:10.1016/j.jfa.2009.11.001
[22] Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, vol. 113, 2nd edn. Springer, New York (1991) · Zbl 0734.60060
[23] Kumagai, T.: Anomalous random walks and diffusions: From fractals to random media. Proc. ICM Seoul IV, 75-94 (2014) · Zbl 1373.60135
[24] Maillard, P., Rhodes, R., Vargas, V., Zeitouni, O.: Liouville heat kernel: regularity and bounds. Ann. Inst. Henri Poincaré Probab. Stat. (2014, preprint, to appear) · Zbl 1359.35088
[25] Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and applications: a review. Probab. Surv. 11, 315-392 (2014) · Zbl 1316.60073 · doi:10.1214/13-PS218
[26] Rhodes, R., Vargas, V.: Spectral dimension of Liouville quantum gravity. Ann. Henri Poincaré 15(12), 2281-2298 (2014) · Zbl 1305.83036 · doi:10.1007/s00023-013-0308-y
[27] Robert, R., Vargas, V.: Gaussian multiplicative chaos revisited. Ann. Probab. 38(2), 605-631 (2010) · Zbl 1191.60066 · doi:10.1214/09-AOP490
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.