×

The zero set of a twistor spinor in any metric signature. (English) Zbl 1327.53017

In Chapter 2, “Basic facts about twistor spinors and conformal Cartan geometry”, the reader finds the statement that “[…] there is a natural double covering from \(\mathrm{Spin}(p,q)\) onto \(\mathrm{SO}(p,q)\)”. According to common denotations \(\mathrm{SO}(p,q)\) is the special pseudo-orthogonal group of a quadratic form with signature \((p,q)\) on a real vector space, and \(\mathrm{Spin}(p,q)\) is the reduced Clifford group which is defined by means of the real Clifford algebra belonging to this quadratic form. If the quadratic form is definite, then the statement above is correct. If it is indefinite, however, this statement is generally wrong: in case of signature \((2,1)\) for instance there can be easily found an element of \(\mathrm{SO}(2,1)\) which is not an image of an element of \(\mathrm{Spin}(2,1)\).
The paper will need a revision.

MSC:

53B30 Local differential geometry of Lorentz metrics, indefinite metrics
53C27 Spin and Spin\({}^c\) geometry
Full Text: DOI

References:

[1] Alt, J.: Transitive conformal holonomy groups. Cent. Eur. J. Math. 10(5), 1710-1720 (2012) · Zbl 1278.53045 · doi:10.2478/s11533-012-0009-7
[2] Armstrong, S.: Holonomy of Cartan Connections. Ph.D. thesis, Oxford (2006)
[3] Armstrong, S.: Definite signature conformal holonomy: a complete classification. J. Geom. Phys. 57(10), 2024-2048 (2007) · Zbl 1407.53050 · doi:10.1016/j.geomphys.2007.05.001
[4] Bailey, T.N., Eastwood, M.G., Gover, A.R.: Thomas’s structure bundle for conformal, projective and related structures. Rocky Mt. J. Math. 24(4), 1191-1217 (1994). doi:10.1216/rmjm/1181072333 · Zbl 0828.53012
[5] Baum, H.: Spin-Strukturen und Dirac-Operatoren über pseudo-Riemannschen Mannigfaltigkeiten. In: Teubner-Texte zur Mathematik, vol. 41. Teubner-Verlag, Stuttgart, Leipzig (1981) · Zbl 0519.53054
[6] Baum, H., Friedrich, T., Grunewald, R., Kath. I.: Twistors and Killing Spinors on Riemannian Manifolds. In: Teubner-Texte zur Mathematik, vol. 124. Teubner-Verlag, Stuttgart, Leipzig (1991) · Zbl 0734.53003
[7] Baum, H., Juhl, A.: Conformal differential geometry—Q-curvature and conformal holonomy. In: Oberwolfach Seminars, vol. 40. Birkhäuser (2010) · Zbl 1189.53045
[8] Baum, H., Leitner, F.: The twistor equation in Lorentzian spin geometry. Math. Z. 247, 795-812 (2004) · Zbl 1068.53031 · doi:10.1007/s00209-004-0647-y
[9] Belgun, F., Moroianu, A., Ornea, L.: Essential points of conformal vector fields. J. Geom. Phys. 61(3), 589-593 (2011) · Zbl 1220.53042 · doi:10.1016/j.geomphys.2010.11.007
[10] Brozos-Vázquez, M., García-Río, E., Gilkey, P., Nikcevic, S., Vázquez-Lorenzo, R.: The Geometry of Walker Manifolds. Synthesis Lectures on Mathematics and Statistics. Morgan & Claypool Publishers (2009). doi:10.2200/S00197ED1V01Y200906MAS005 · Zbl 1206.53039
[11] Bryant, R., Dunajski, M., Eastwood, M.: Metrisability of two-dimensional projective structures. J. Differ. Geom. 83(3), 465-500 (2009) · Zbl 1196.53014
[12] Calvino, E., Garcia, E., Gilkey, P., Vazquez, R.: The geometry of modified Riemannian extensions. Proc. R. Soc. A 465, 2023-2040 (2009) · Zbl 1186.53056 · doi:10.1098/rspa.2009.0046
[13] Cap, A., Gover, R., Hammerl, M.: Normal BGG solutions and polynomials. Int. J. Math. 23(11), 11 (2012) · Zbl 1263.53016 · doi:10.1142/S0129167X12501170
[14] Cap, A., Gover, R., Hammerl, M.: Holonomy of Cartan connections and curved orbit decompositions. Duke Math. J. 163(5), 1035-1070 (2014) · Zbl 1298.53042 · doi:10.1215/00127094-2644793
[15] Cap, A., Slovak, J.: Parabolic Geometries I. Background and General Theory. In: Mathematical Surveys and Monographs, AMS, vol. 154 (2009) · Zbl 1183.53002
[16] Derdzinski, A.: Zeros of conformal fields in any metric signature. Class. Quantum. Grav. 28(7), 075011 (2011). http://stacks.iop.org/0264-9381/28/i=7/a=075011 · Zbl 1251.53015
[17] Derdzinski, A.: Two-jets of conformal fields along their zero sets. Cent. Eur. J. Math. 10(5), 1698-1709 (2012) · Zbl 1260.53048 · doi:10.2478/s11533-012-0049-z
[18] Dunajski, M., Tod, P.: Four-dimensional metrics conformal to Kähler. Math. Proc. Camb. Philos. Soc. 148, 485-503 (2010) · Zbl 1188.53078 · doi:10.1017/S030500410999048X
[19] Dunajski, M., West, S.: Anti-selfdual conformal structures with null Killing vectors from projective structures. Commun. Math. Phys. 272, 85-118 (2007) · Zbl 1147.53022 · doi:10.1007/s00220-007-0208-4
[20] Eastwood, M.: Notes on projective differential geometry (2006). http://www.ima.umn.edu/imaging/SP7.17-8.4.06/activities/Eastwood-Michael/projective.pdf · Zbl 1186.53020
[21] Fischmann, M.: Conformally covariant differential operators acting on spinor bundles and related conformal covariants. Humboldt-Universität zu Berlin, Ph.D Thesis (2013) · Zbl 1186.53056
[22] Frances, C.: Causal conformal vector fields, and singularities of twistor spinors. Ann. Glob. Anal. Geom. 32, 277-295 (2007) · Zbl 1126.53014 · doi:10.1007/s10455-007-9060-1
[23] Frances, C.: Essential conformal structures in Riemannian and Lorentzian geometry. In: Alekseevsky, D.V., Baum, H. (eds.) Recent developments in pseudo-Riemannian geometry (ESI Lect. Math. Phys. EMS Zürich, pp. 231-260 (2008) · Zbl 1157.53021
[24] Frances, C.: About pseudo-Riemannian Lichnerowicz conjecture. ArXiv e-prints. arXiv:1211.0635 (2012) · Zbl 1335.53097
[25] Habermann, K.: Twistor spinors and their zeroes. J. Geom. Phys. 14(1), 1-24 (1994) · Zbl 0807.53037 · doi:10.1016/0393-0440(94)90051-5
[26] Habermann, K.: The graded algebra and the Lie derivative of spinor fields associated to the twistor equation. J. Geom. Phys. 18, 131-146 (1996) · Zbl 0867.53033 · doi:10.1016/0393-0440(95)00009-7
[27] Hammerl, M., Sagerschnig, K.: A non-normal Fefferman-type construction of split signature conformal structures admitting twistor spinors. ArXiv e-prints, http://arxiv.org/abs/1109.4231 (2011) · Zbl 1229.53058
[28] Hammerl, M., Sagerschnig, K.: The twistor spinors of generic 2- and 3-distributions. Ann. Glob. Anal. Geom. 39(4), 403-425 (2011). doi:10.1007/s10455-010-9240-2 · Zbl 1229.53058 · doi:10.1007/s10455-010-9240-2
[29] Harvey, F.: Spinors and Callibrations. In: Perspectives in Mathematics, vol. 5, Academic Press (1990) · Zbl 0084.18202
[30] Kobayashi, S.: Fixed points of isometries. Nagoya Math. 13, 63-68 (1958) · Zbl 0084.18202
[31] Kühnel, W., Rademacher, H.: Essential conformal fields in pseudo-Riemannian geometry. J. Math. Pures Appl. 74, 453-481 (1995) · Zbl 0873.53047
[32] Kühnel, W., Rademacher, H.: Twistor spinors and gravitational instantons. Lett. Math. Phys. 38, 411-419 (1996) · Zbl 0860.53029 · doi:10.1007/BF01815523
[33] Kühnel, W., Rademacher, H.: Conformal vector fields on pseudo-Riemannian spaces. Differ. Geom. Appl. 7, 237-250 (1997) · Zbl 0901.53048 · doi:10.1016/S0926-2245(96)00052-6
[34] Kühnel, W., Rademacher, H.: Essential conformal fields in pseudo-Riemannian geometry II. J. Math. Sci. Univ. Tokyo 4, 649-662 (1997) · Zbl 0902.53046
[35] Kühnel, W., Rademacher, H.: Asymptotically Euclidean manifolds and twistor spinors. Commun. Math. Phys. 196(1), 67-76 (1998) · Zbl 0929.53023 · doi:10.1007/s002200050414
[36] Kühnel, W., Rademacher, H.B.: Twistor spinors with zeros. Int. J. Math. 5(6), 877-895 (1994) · Zbl 0818.53054 · doi:10.1142/S0129167X94000450
[37] Lawson, H., Michelson, M.: Spin Geometry. Princeton University Press (1989) · Zbl 1407.53050
[38] Leistner, T.: Holonomy and Parallel Spinors in Lorentzian Geometry. Humboldt-Universität zu Berlin, Ph.D Thesis (2004) · Zbl 1088.53032
[39] Leistner, T.: Conformal holonomy of C-spaces, Ricci-flat, and Lorentzian manifolds. Differ. Geom. Appl. 24, 458-478 (2006) · Zbl 1109.53052 · doi:10.1016/j.difgeo.2006.04.008
[40] Leitner, F.: The Twistor Equation in Lorentzian Spin Geometry. Humboldt-Universität zu Berlin, Ph.D Thesis (2001) · Zbl 1297.53003
[41] Leitner, F.: Conformal Killing forms with normalisation condition. Rend. Circ. Math. Palermo 75(2), 279-292 (2005) · Zbl 1101.53040
[42] Leitner, F.: Applications of Cartan and Tractor Calculus to Conformal and CR-Geometry. Universität Stuttgart, Habil (2007)
[43] Leitner, F.: About twistor spinors with zero in Lorentzian geometry. SIGMA, 5 (2009) · Zbl 1189.53044
[44] Lichnerowicz, A.: On the twistor spinors. Lett. Math. Phys. 18(4), 333-345 (1989). doi:10.1007/BF00405265 · Zbl 0685.53017 · doi:10.1007/BF00405265
[45] Lischewski, A.: Reducible conformal holonomy in any metric signature and application to twistor spinors in low dimension. ArXiv e-prints, http://arxiv.org/abs/1408.1685 (2014) · Zbl 1318.53047
[46] Medeiros, P., Hollands, S.: Conformal symmetry superalgebras. Class. Quantum Grav. 30(17), 175016 (2013) · Zbl 1276.83047
[47] Rajaniemi, H.: Conformal Killing spinors in supergravity and related aspects of spin geometry. University of Edinburgh, Ph.D Thesis (2006)
[48] Sharpe, R.W.: Differential geometry: cartans generalization of Klein’s Erlangen Program, vol. 166, Springer (1997) · Zbl 0876.53001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.