×

About pseudo-Riemannian Lichnerowicz conjecture. (English) Zbl 1335.53097

A (pseudo-)Riemannian manifold \((M,g)\) is said to have essential conformal group if there are no (pseudo-)Riemannian metrics conformal to \(g\) with respect to which \(\mathrm{Conf}(M,g)\) acts isometrically. It is a classical result obtained independently by M. Obata [J. Differ. Geom. 6, 247–258 (1971; Zbl 0236.53042)] and J. Lelong-Ferrand [Mem. Cl. Sci., Collect. Octavo, Acad. R. Belg. 39, No. 5, 3–44 (1971; Zbl 0215.50902)] that the only closed Riemannian manifold with essential conformal group is the round sphere, confirming a conjecture of Lichnerowicz. G. D’Ambra and M. Gromov [Surv. Differ. Geom., Suppl. J. Diff. Geom. 1, 19–111 (1991; Zbl 0752.57017)] asked whether the same conjecture of Lichnerowicz holds in the pseudo-Riemannian realm. More precisely, the statement of the “pseudo-Riemannian Lichnerowicz conjecture” is that a closed pseudo-Riemannian manifold with essential conformal group is conformally flat. This short and well-written note constructs counter-examples to this conjecture on \(S^1\times S^{n-1}\) with metrics of all signatures \(\geq 2\), leaving only the Lorentzian case unsettled.

MSC:

53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
53A30 Conformal differential geometry (MSC2010)

References:

[1] Д. В. Алексеевский, Группы конформных преобразований римановых пространств, Матем. сб. 89(131) (1972), no. 2(10), 280-296. Engl. transl.: D. V. Alekseevskii, Groups of conformal transformations of Riemannian spaces, Math. USSR-Sb. 18 (1972), no. 2, 285-301. · Zbl 1126.14001
[2] D. Alekseevskii, Self-similar Lorentzian manifolds, Ann. Global Anal. Geom. 3 (1985), no. 1, 59-84. · Zbl 0538.53060
[3] U. Bader, A. Nevo, Conformal actions of simple Lie groups on compact pseudo-Riemannian manifolds, J. Differential Geom. 60 (2002), 355-387. · Zbl 1076.53083
[4] G. D’Ambra, M. Gromov, Lectures on transformation groups: geometry and dynamics, in: Surveys in Differential Geometry (Cambridge, MA, 1990), Lehigh Univ., Bethlehem, PA, 1991, pp. 19-111. · Zbl 0752.57017
[5] M. Dunajski, S. West, Anti-self-dual conformal structures in neutral signature, in: Recent Developments in Pseudo-Riemannian Geometry, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008, pp. 113-148. · Zbl 1158.53014
[6] J. Ferrand, Transformations conformes et quasi-conformes des variétés riemanniennes compactes, Mém. Acad. Royale Belgique 39 (1971), 1-44. · Zbl 0215.50902
[7] J. Ferrand, The action of conformal transformations on a Riemannian manifold, Math. Ann. 304 (1996), no. 2, 277-291. · Zbl 0866.53027
[8] J. Ferrand, Histoire de la réductibilité du groupe conforme des variét és riemanniennes (1964-1994), in: Séminaire de Théorie Spectrale et Géométrie, Vol. 17, Année 1998-1999, pp. 9-25. · Zbl 0963.53001
[9] C. Frances, Sur les variétés lorentziennes dont le groupe conforme est essentiel, Math. Ann. 332 (2005), no. 1, 103-119. · Zbl 1085.53061
[10] C. Frances, Essential conformal structures in Riemannian and Lorentzian geometry, in: Recent Developments in Pseudo-Riemannian Geometry, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008, pp. 231-260. · Zbl 1157.53021
[11] C. Frances, Sur le groupe d’automorphismes des géométries paraboliques de rang 1, Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 5, 741-764. · Zbl 1135.53016
[12] C. Frances, K. Melnick, Conformal actions of nilpotent groups on pseudo-Rie-mannian manifolds, Duke Math. J. 153 (2010), no. 3, 511-550. · Zbl 1204.53056
[13] C. Frances, A. Zeghib, Some remarks on conformal pseudo-Riemannian actions of simple Lie groups, Math. Res. Lett. 12 (2005), no. 1, 49-56. · Zbl 1077.53057
[14] B. Kloeckner, V. Minerbe, Rigidity in CR geometry: the Schoen-Webster theorem, Differential Geom. Appl. 27 (2009), no. 3, 399-411. · Zbl 1170.32012
[15] W. Kühnel, H. B. Rademacher, Essential conformal fields in pseudo-Riemannian geometry. II, J. Math. Sci. Univ. Tokyo. 4 (1997), no. 3, 649-662. · Zbl 0902.53046
[16] M. J. Markowitz, An intrinsic conformal Lorentz pseudodistance, Math. Proc. Camb. Phil. Soc. 89 (1981), 359-371. · Zbl 0452.53010
[17] V. Matveev, Proof of the projective Lichnerowicz-Obata conjecture, J. Differential Geom. 75 (2007), no. 3, 459-502. · Zbl 1115.53029
[18] V. Matveev, H-B. Rademacher, M. Troyanov, A. Zeghib, Finsler conformal Lichnerowicz-Obata conjecture, Ann. Inst. Fourier 59 (2009), no. 3, 937-949. · Zbl 1179.53075
[19] M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geom. 6 (1971/72), 247-258. · Zbl 0236.53042
[20] M. N. Podoksenov, Conformally homogeneous Lorentzian manifolds. II (Russian), Sibirsk. Mat. Zh. bf 33 (1992), no. 6, 154-161, 232; translation in Siberian Math. J.33 (1992), no. 6, 1087-1093. · Zbl 0842.53048
[21] R. Schoen, On the conformal and CR automorphism groups, Geom. Funct. Anal. 5 (1995), no. 2, 464-481. · Zbl 0835.53015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.