×

Four-dimensional metrics conformal to Kähler. (English) Zbl 1188.53078

Summary: We derive some necessary conditions on a Riemannian metric \((M, g)\) in four dimensions for it to be locally conformal to Kähler. If the conformal curvature is non anti-self-dual, the self-dual Weyl spinor must be of algebraic type \(D\) and satisfy a simple first order conformally invariant condition which is necessary and sufficient for the existence of a Kähler metric in the conformal class. In the anti-self-dual case we establish a one to one correspondence between Kähler metrics in the conformal class and non-zero parallel sections of a certain connection on a natural rank ten vector bundle over \(M\). We use this characterisation to provide examples of ASD metrics which are not conformal to Kähler.
We establish a link between the ‘conformal to Kähler condition’ in dimension four and the metrisability of projective structures in dimension two. A projective structure on a surface \(U\) is metrisable if and only if the induced (2,2) conformal structure on \(M = TU\) admits a Kähler metric or a para-Kähler metric.

MSC:

53C55 Global differential geometry of Hermitian and Kählerian manifolds

References:

[1] DOI: 10.2307/2154133 · Zbl 0754.53053 · doi:10.2307/2154133
[2] DOI: 10.1063/1.529375 · Zbl 0737.53073 · doi:10.1063/1.529375
[3] DOI: 10.1007/BF00762011 · Zbl 0354.53025 · doi:10.1007/BF00762011
[4] Papadopoulos, Phys. Lett. B 356 pp 249– (1995) · doi:10.1016/0370-2693(95)00756-B
[5] DOI: 10.1088/0264-9381/20/23/004 · Zbl 1051.32019 · doi:10.1088/0264-9381/20/23/004
[6] DOI: 10.1007/s00220-007-0208-4 · Zbl 1147.53022 · doi:10.1007/s00220-007-0208-4
[7] DOI: 10.1007/s12220-008-9019-x · Zbl 1154.53027 · doi:10.1007/s12220-008-9019-x
[8] DOI: 10.1098/rspa.2001.0918 · Zbl 1006.53040 · doi:10.1098/rspa.2001.0918
[9] LeBrun, J. Diff. Geom. 34 pp 233– (1991)
[10] Derdziński, Compositio Math. 49 pp 405– (1983)
[11] DOI: 10.2307/2045741 · Zbl 0606.53029 · doi:10.2307/2045741
[12] Chave, Phys. Lett. B 383 pp 262– (1996) · doi:10.1016/0370-2693(96)00760-5
[13] DOI: 10.1098/rspa.1982.0035 · Zbl 0549.53042 · doi:10.1098/rspa.1982.0035
[14] Kim, J. Reine Angew. Math. 486 pp 69– (1997)
[15] Bryant, Semin. Congr. 4 pp 63– (2000)
[16] DOI: 10.1216/rmjm/1181072333 · Zbl 0828.53012 · doi:10.1216/rmjm/1181072333
[17] DOI: 10.1142/S0129167X97000214 · Zbl 0891.53054 · doi:10.1142/S0129167X97000214
[18] DOI: 10.1098/rspa.1978.0143 · Zbl 0389.53011 · doi:10.1098/rspa.1978.0143
[19] Yano, Pure and Appl. Math. 16 (1973)
[20] Ward, Phys. Lett. 61A pp 81– (1977) · Zbl 0964.81519 · doi:10.1016/0375-9601(77)90842-8
[21] Walker, Convegno di Geometria Differenziale (1953)
[22] DOI: 10.1007/s00209-003-0549-4 · Zbl 1061.53033 · doi:10.1007/s00209-003-0549-4
[23] DOI: 10.1007/s00222-004-0436-6 · Zbl 1083.32021 · doi:10.1007/s00222-004-0436-6
[24] Penrose, Spinors and space-time. Two-spinor calculus and relativistic fields (1987) · Zbl 0663.53013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.