×

Causal conformal vector fields, and singularities of twistor spinors. (English) Zbl 1126.53014

The author studies the geometry around the singularity of a twistor spinor, on a Lorentz manifold \((M,g)\) of dimension greater or equal to three, endowed with a spin structure. Using the dynamical properties of conformal vector fields, he proves that the geometry has to be conformally flat on some open subset of any neighbourhood of the singularity. As a consequence, any analytic Lorentz manifold, admitting a twistor spinor with at least one zero has to be conformally flat.

MSC:

53B30 Local differential geometry of Lorentz metrics, indefinite metrics
53C27 Spin and Spin\({}^c\) geometry
37C10 Dynamics induced by flows and semiflows

References:

[1] Alekseevski D. (1985). Self-similar Lorentzian manifolds. Ann. Global Anal. Geom. 3(1): 59–84 · doi:10.1007/BF00054491
[2] Baum H. and Leitner F. (2004). The twistor equation in Lorentzian Spin geometry. Math. Z 247(4): 795–812 · Zbl 1068.53031 · doi:10.1007/s00209-004-0647-y
[3] Beem J.K. and Ehrlich P.E. (1981). Global Lorentzian Geometry. Dekker, New York · Zbl 0462.53001
[4] Besse, A.: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 10, Springer-Verlag, Berlin (1987) · Zbl 0613.53001
[5] Eisenhart L. (1949). Riemannian Geometry. 2d printing. Princeton University Press, Princeton, NJ · Zbl 0041.29403
[6] Frances, C.: Géométrie et dynamique lorentziennes conformes. Thèse. Available at http://mahery.math.u-psud.fr/\(\sim\)frances
[7] Frances C. (2005). Sur les variétés lorentziennes dont le groupe conforme est essentiel. Math. Ann. 332(1): 103–119 · Zbl 1085.53061 · doi:10.1007/s00208-004-0619-x
[8] Kühnel W. and Rademacher H.B. (1995). Essential conformal fields in pseudo-Riemannian geometry I. J. Math. Pures Appl. 74(5): 453–481 · Zbl 0873.53047
[9] Kühnel W. and Rademacher H.B. (1997). Essential conformal fields in pseudo-Riemannian geometry II. J. Math. Sci. Univ. Tokyo 4(3): 649–662 · Zbl 0902.53046
[10] Lawson H.B. and Michelsohn M. (1989). Spin Geometry. Princeton Mathematical series. Princeton University Press, Princeton, NJ · Zbl 0688.57001
[11] Leitner, F.: Zeros of conformal vector fields and twistor spinors in Lorentzian geometry. SFB288-Preprint. No 439. Berlin (1999)
[12] Markowitz M.J. (1981). An intrinsic conformal Lorentz pseudodistance. Math. Proc. Camb. Phil. Soc: 89: 359–371 · Zbl 0452.53010 · doi:10.1017/S0305004100058230
[13] Zeghib A. (1999). Isometry groups and geodesic foliations of Lorentz manifolds. I,II. Foundations of Lorentz dynamics. Geom. Funct. Anal. 9(4): 775–822 · Zbl 0946.53035 · doi:10.1007/s000390050102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.