×

Stabilized finite element solution to handle complex heat and fluid flows in industrial furnaces using the immersed volume method. (English) Zbl 1319.76027

Summary: We consider the numerical simulation of conjugate heat transfer, incompressible turbulent flows for multicomponents systems using a stabilized finite element method. We present an immersed volume approach for thermal coupling between fluids and solids for heating high-alloy steel inside industrial furnaces. It consists in considering a single 3D grid of the furnace and solving one set of equations with different thermal properties. A distance function enables to define precisely the position and the interface of any objects inside the volume and to provide homogeneous physical and thermodynamic properties for each subdomain. An anisotropic mesh adaptation algorithm based on the variations of the distance function is then applied to ensure an accurate capture of the discontinuities that characterize the highly heterogeneous domain. The proposed method demonstrates the capability of the model to simulate an unsteady three-dimensional heat transfers and turbulent flows in an industrial furnace with the presence of three conducting solid bodies.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76M12 Finite volume methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI

References:

[1] Ishii, Numerical modeling of an industrial aluminium melting furnace, Journal of Energy Resources Technology 120 pp 276– (1998) · doi:10.1115/1.2795048
[2] Nieckele, Numerical modeling of an industrial aluminium melting furnace, Journal of Energy Resources Technology 126 pp 72– (2004) · doi:10.1115/1.1625396
[3] Song, Simulation of fluid flow and gaseous radiation heat transfer in a natural gas-fired furnace, International Journal of Numerical Methods for Heat and Fluid Flow 7 pp 169– (1997) · Zbl 0973.76617 · doi:10.1108/09615539710163248
[4] Hachem E Kloczko T Digonnet H Coupez T Immersed volume method for solving natural convection, conduction and radiation of a hat-shaped disk inside a 3d enclosure · Zbl 1356.76165
[5] Houzeaux, An overlapping dirichlet/robin domain decomposition method, Journal of Computational and Applied Mathematics 158 (2) pp 243– (2003) · Zbl 1033.65111 · doi:10.1016/S0377-0427(03)00447-3
[6] Felippa, Partitioned analysis for coupled mechanical systems, Engineering Computations 5 pp 123– (1988) · doi:10.1108/eb023730
[7] Principe, A numerical approximation of the thermal coupling of fluids and solids, International Journal for Numerical Methods in Fluids 59 pp 1181– (2009) · Zbl 1158.76025 · doi:10.1002/fld.1856
[8] Fedkiw, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), Journal of Computational Physics 152 pp 457– (1999) · Zbl 0957.76052 · doi:10.1006/jcph.1999.6236
[9] Fadlun, Combined immersed boundary finite-diffrence methods for three-dimensional complex flow simulations, Journal of Computational Physics 161 pp 35– (2000) · Zbl 0972.76073 · doi:10.1006/jcph.2000.6484
[10] Peskin, The immersed boundary method, Acta Numerica 11 pp 1– (2002) · Zbl 1123.74309 · doi:10.1017/S0962492902000077
[11] Rixen D Gosselet P Domain decomposition methods applied to challenging engineering problems 564 581
[12] Sukumar, Extended finite element method for three-dimensional crack modeling, International Journal for Numerical Methods in Engineering 48 (11) pp 1549– (2000) · Zbl 0963.74067 · doi:10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A
[13] Dompierre J Vallet MG Fortin M Habashi WG At-Ali-Yahia D Boivin S Bourgault Y A.tam: edge-based mesh adaptation for cfd 265 299
[14] Frey, Anisotropic mesh adaptation for cfd computations, Computer Methods in Applied Mechanics and Engineering 194 (48-49) pp 5068– (2005) · Zbl 1092.76054 · doi:10.1016/j.cma.2004.11.025
[15] Remacle, Anisotropic adaptive simulation of transient flows, International Journal for Numerical Methods in Engineering 62 pp 899– (2005) · Zbl 1078.76042 · doi:10.1002/nme.1196
[16] Gruau, 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric, Computer Methods in Applied Mechanics and Engineering 194 pp 4951– (2005) · Zbl 1102.65122 · doi:10.1016/j.cma.2004.11.020
[17] Bruchon, Using a signed distance function for the simulation of metal forming processes: formulation of the contact condition and mesh adaptation. From a Lagrangian approach to an Eulerian approach, International Journal for Numerical Methods in Engineering 78 (8) pp 980– (2009) · Zbl 1183.74263 · doi:10.1002/nme.2519
[18] Brooks, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering 32 pp 199– (1982) · Zbl 0497.76041 · doi:10.1016/0045-7825(82)90071-8
[19] Franca, Stabilized finite element methods: Ii. The incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering 99 pp 209– (1992) · Zbl 0765.76048 · doi:10.1016/0045-7825(92)90041-H
[20] Codina, Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods, Computer Methods in Applied Mechanics and Engineering 190 (13-14) pp 1579– (2000) · Zbl 0998.76047 · doi:10.1016/S0045-7825(00)00254-1
[21] Codina, Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection, Computer Methods in Applied Mechanics and Engineering 182 (3-4) pp 277– (2000) · Zbl 0986.76037 · doi:10.1016/S0045-7825(99)00194-2
[22] Hachem, Stabilized finite element method for incompressible flows with high Reynolds number, Journal of Computational Physics 229 (23) pp 8643– (2010) · Zbl 1282.76120 · doi:10.1016/j.jcp.2010.07.030
[23] Brezzi, Choosing bubbles for advection-diffusion problems, Mathematical Models and Methods in Applied Sciences 4 pp 571– (1994) · Zbl 0819.65128 · doi:10.1142/S0218202594000327
[24] Franca, Bubble functions prompt unusual stabilized finite element methods, Computer Methods in Applied Mechanics and Engineering 123 pp 229– (1995) · Zbl 1067.76567 · doi:10.1016/0045-7825(94)00721-X
[25] Codina, Comparison of some finite element methods for solving the diffusion-convection-reaction equation, Computer Methods in Applied Mechanics and Engineering 156 pp 185– (1998) · Zbl 0959.76040 · doi:10.1016/S0045-7825(97)00206-5
[26] Modest, Radiative Heat Transfer (1993)
[27] Launder, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering 3 (2) pp 269– (1974) · Zbl 0277.76049 · doi:10.1016/0045-7825(74)90029-2
[28] Jones, The prediction of laminarization with a two-equation model of turbulence, International Journal of Heat and Mass Transfer 15 (2) pp 301– (1972) · doi:10.1016/0017-9310(72)90076-2
[29] Siegel, Thermal Radiation Heat Transfer (2002)
[30] Han, A temperature wall function formulation for variable-density turbulent flows with application to engine convective heat transfer modeling, International Journal of Heat and Mass Transfer 40 (3) pp 613– (1997) · Zbl 0922.76229 · doi:10.1016/0017-9310(96)00117-2
[31] Coupez T Rénitialisation convective et locale des fonctions level set pour le mouvement de surfaces et d’interfaces 2006 33 41
[32] Valette, Méthodes d’interaction fluide-structure pour la simulation multi-échelles des procédés de mélange, Mécanique et Industries 8 (3) pp 251– (2007) · doi:10.1051/meca:2007046
[33] Bernacki, Level set method for the numerical modelling of primary recrystallization in the polycrystalline materials, Scripta Materialia 58 (12) pp 1129– (2008) · doi:10.1016/j.scriptamat.2008.02.016
[34] Coupez, Génération de maillage et adaptation de maillage par optimisation locale, Revue européenne des éléments finis 9 (4) pp 403– (2000) · Zbl 0953.65089
[35] Mesri, Advanced parallel computing in material forming with cimlib, European Journal of Computational Mechanics 18 (7-8) pp 669– (2009) · Zbl 1278.74177
[36] Patankar, Series in Computational and Physical Processes in Mechanics and Thermal Sciences, in: Numerical Heat Transfer and Fluid Flow (1980)
[37] Brezzi, Stabilized mixed methods for the stokes problem, Numerische Mathematik 53 pp 225– (1988) · Zbl 0669.76052 · doi:10.1007/BF01395886
[38] Brezzi, Notes on Numerical Fluid Mechanics, in: Efficient Solutions of Elliptic Systems pp 11– (1984) · doi:10.1007/978-3-663-14169-3_2
[39] Franca, Two classes of mixed finite element methods, Computer Methods in Applied Mechanics and Engineering 69 pp 89– (1988) · Zbl 0629.73053 · doi:10.1016/0045-7825(88)90168-5
[40] Codina, Finite element approximation of the modified Boussinesq equations using a stabilized formulation, International Journal for Numerical Methods in Fluids 57 pp 1305– (2008) · Zbl 1140.76016 · doi:10.1002/fld.1718
[41] Arnold, A stable finite element for the stokes equations, Calcolo 23 (4) pp 337– (1984) · Zbl 0593.76039 · doi:10.1007/BF02576171
[42] Brezzi, A relationship between stabilized finite element methods and the Galerkin method with bubble functions, Computer Methods in Applied Mechanics and Engineering 96 pp 117– (1992) · Zbl 0756.76044 · doi:10.1016/0045-7825(92)90102-P
[43] Bank, A comparison between the mini element and the Petrov-Galerkin formulations for the generalized Stokes problem, Computer Methods in Applied Mechanics and Engineering 83 pp 61– (1990) · Zbl 0732.65100 · doi:10.1016/0045-7825(90)90124-5
[44] Masud, A multiscale finite element method for the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering 195 pp 1750– (2006) · Zbl 1178.76233 · doi:10.1016/j.cma.2005.05.048
[45] Badia, Analysis of a stabilized finite element approximation of the transient convection-diffusion equation using an ale framework, Journal on Numerical Analysis 44 pp 2159– (2006) · Zbl 1126.65079 · doi:10.1137/050643532
[46] Hughes, A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Computer Methods in Applied Mechanics and Engineering 59 pp 85– (1987) · Zbl 0622.76077 · doi:10.1016/0045-7825(86)90025-3
[47] Galeão, A consistent approximate upwind Petrov-Galerkin method for convection-dominated problems, Computer Methods in Applied Mechanics and Engineering 68 (1) pp 83– (1988) · Zbl 0626.76091 · doi:10.1016/0045-7825(88)90108-9
[48] Hachem E Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces 2009
[49] Digonnet H Coupez T Object-oriented programming for fast and easy development of parallel applications in forming processes simulation 1922 1924
[50] Digonnet, Numiform pp 269– (2007)
[51] Coupez, Parallel meshing and remeshing, Applied Mathematical Modelling 25 (2) pp 153– (2000) · Zbl 1076.74551 · doi:10.1016/S0307-904X(00)00045-7
[52] Codina, Dynamic subscales in the finite element approximation of thermally coupled incompressible flows, International Journal for Numerical Methods in Fluids 54 pp 707– (2007) · Zbl 1114.76041 · doi:10.1002/fld.1481
[53] Nicolás, 2D thermal/isothermal incompressible viscous flows, International Journal for Numerical Methods in Fluids 48 pp 349– (2005) · Zbl 1068.76064 · doi:10.1002/fld.895
[54] Bhave, Natural convection heat transfer enhancement using adiabatic block: optimal block size and Prandtl number effect, International Journal of Heat and Mass Transfer 49 pp 3807– (2006) · Zbl 1108.80303 · doi:10.1016/j.ijheatmasstransfer.2006.04.017
[55] Mohamad, Transient natural convection of low-Prandtl-number fluids in a differentially heated cavity, International Journal for Numerical Methods in Fluids 13 pp 61– (1991) · Zbl 0724.76082 · doi:10.1002/fld.1650130105
[56] Yucel, Natural convection in partially divided square enclosures, Heat and Mass Transfer 40 pp 167– (2003) · doi:10.1007/s00231-002-0361-4
[57] Wakitani, Numerical study of three-dimensional oscillatory natural convection at low Prandtl number in rectangular enclosures, Journal of Heat Transfer 123 pp 77– (2001) · doi:10.1115/1.1336508
[58] Liaqat, Conjugate natural convection in a square enclosure containing volumetric sources, International Journal of Heat and Mass Transfer 44 pp 3273– (2001) · Zbl 1006.76547 · doi:10.1016/S0017-9310(00)00345-8
[59] Kondaraju, Hybrid turbulence simulation of spray impingement cooling: the effect of vortex motion on turbulent heat flux, International Journal for Numerical Methods in Fluids 59 (6) pp 657– (2009) · Zbl 1369.76016 · doi:10.1002/fld.1828
[60] Yongson, Airflow analysis in an air conditioning room, Building and Environment 42 (3) pp 1531– (2007) · doi:10.1016/j.buildenv.2006.01.002
[61] Kim, A heat transfer model for the analysis of transient heating of the slab in a direct-fired walking beam type reheating furnace, International Journal of Heat and Mass Transfer 450 (1) pp 3740– (2007) · Zbl 1125.80310 · doi:10.1016/j.ijheatmasstransfer.2007.02.023
[62] Laguerre, Numerical simulation of air flow and heat transfer in domestic refrigerators, Journal of Food Engineering 81 (1) pp 144– (2007) · doi:10.1016/j.jfoodeng.2006.10.029
[63] Kuzmin, On the implementation of the k-epsilon turbulence model in incompressible flow solvers based on a finite element discretization, International Journal of Computing Science and Mathematics 2/3/4 pp 193– (2007) · Zbl 1185.76706 · doi:10.1504/IJCSM.2007.016531
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.