×

Trace heat kernel asymptotics in 3D contact sub-Riemannian geometry. (English. Russian original) Zbl 1294.58004

J. Math. Sci., New York 195, No. 3, 391-411 (2013); translation from Sovrem. Mat. Prilozh. 82 (2012).
This article is a research into relations between analytical properties and differential invariants for the geometry of a contact sub-Riemannian manifold of dimension \(3\) using the asymptotic expansion of the heat kernel associated to the sub-Riemannian heat equation on such manifolds.
The author considers a complete sub-Riemannian manifold \(M\) of dimension \(3\) with a contact structure \(\omega\), i.e., \(\omega\) is a one form on \(M\) where \(\omega\wedge d\omega\) is a non-vanishing \(3\)-form on \(M.\) Denoting \(\mathcal{D}:=\mathrm{ker}(\omega)\) the smooth distribution on \(M\) with constant rank \(2\), it is assumed that \(g_q\) is a Riemannian metric on \(\mathcal{D}_q\) depending smoothly on \(q\in M.\) This gives rise to a metric on \(M\) determined by the Carnot-Caratheodory distance \[ d(q_0, q_1)=\mathrm{inf}\{\int_0^T|\dot{\gamma}(t)|\mathrm{d}t: \gamma: [0, T]\rightarrow M \text{ Lip.,} \gamma(0)=q_0, \gamma(T)=q_1, \dot{\gamma}(t)\in\mathcal{D}_{\gamma(t)}\}. \] Locally, the sub-Riemannian structure is defined by the orthonormal frame \(\{f_1, f_2\}\) satisfying the conditions: \[ \mathcal{D}=\mathrm{span}\{f_1, f_2\}, \quad g(f_i, f_j)=\delta_{ij}, \quad d\omega(f_1, f_2)=1. \] In addition, the Reed vector field associated to the contact structure is the unique vector field \(f_0\) where \(\omega(f_0)=1\) and \(d\omega(f_0, \cdot)=0.\) Denote the functions \(c_{ij}^k\) on \(M\) the structure constants for the Lie algebra generated by \(f_1, f_2, f_3\): \[ [f_1, f_0]=c_{01}^1f_1+c_{01}^2f_2, \quad [f_2, f_0]=c_{02}^1f_1+c_{02}^2f_2, \quad [f_2, f_1]=c_{12}^1f_1+c_{12}^2f_2+f_0. \] There are two differential invariants \(\chi, \kappa\) in contact geometry of dimension \(3\), locally giving by the structure constants. In particular, \[ \kappa=f_2(c_{12}^1)-f_1(c_{12}^2)-(c_{12}^1)^2-(c_{12}^2)^2+\frac{c_{01}^2+c_{02}^1}{2}. \] The spectral geometry of the contact manifold is captured by the sub-Laplacian \(\Delta_f\), which in dimension \(3\) has the form \[ \Delta_f=f_1^2+f_2^2+c_{12}^2f_1-c_{12}^1f_2. \] The heat kernel \(p\) is the Schwarz kernel of the heat operator \(e^{t\Delta_f}\) associated to the sub-Laplacian \[ e^{t\Delta_f}\varphi(x)=\int_M p(t, x, y)\varphi(y)\mathrm{d}y, \qquad \varphi\in C_0^{\infty}(M). \] The main result of this paper relates the first two terms of the small time asymptotic expansion of the heat kernel \(p\) to the geometric invariants of the manifold \(M\): \[ p(t, x, y)\sim\frac{1}{16t^2}[1+\kappa(x)t+o(t)]\quad\text{as}\quad t\to0. \] This result provides a concrete example of contact geometry in dimension \(3\) in understanding relations of geometric invariants to the analysis on manifolds.

MSC:

58J35 Heat and other parabolic equation methods for PDEs on manifolds
58J37 Perturbations of PDEs on manifolds; asymptotics
53D10 Contact manifolds (general theory)
53C17 Sub-Riemannian geometry
53A55 Differential invariants (local theory), geometric objects

References:

[1] A. A. Agrachev, R. V. Gamkrelidze, and A. V. Sarychev, ”Local invariants of smooth control systems,” Acta Appl. Math., 14, No. 3, 191–237 (1989). · Zbl 0681.49018 · doi:10.1007/BF01307214
[2] A. A. Agrachev, ”Exponential mappings for contact sub-Riemannian structures,” J. Dynam. Control Syst., 2, No. 3, 321–358 (1996). · Zbl 0941.53022 · doi:10.1007/BF02269423
[3] A. A. Agrachev, El-A. El-H. Chakir, and J.-P. Gauthier, ”Sub-Riemannian metrics on R 3,” in: CMS Conf. Proc., 25, Amer. Math. Soc., Providence (1998), pp. 29–78. · Zbl 0962.53022
[4] A. A. Agrachev and J.-P. A. Gauthier, ”On the Dido problem and plane isoperimetric problems,” Acta Appl. Math., 57, No. 3, 287–338 (1999). · Zbl 0977.53068 · doi:10.1023/A:1006237201915
[5] A. A. Agrachev and Yu. L. Sachkov, ”Control theory from the geometric viewpoint,” in: Encyclopaedia of Mathematical Sciences, 87, Springer-Verlag, Berlin (2004). · Zbl 1062.93001
[6] A. Agrachev, U. Boscain, J.-P. Gauthier, and F. Rossi, ”The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups,” J. Funct. Anal., 256, No. 8, 2621–2655 (2009). · Zbl 1165.58012 · doi:10.1016/j.jfa.2009.01.006
[7] A. A. Agrachev, D. Barilari, and U. Boscain, Introduction to Riemannian and sub-Riemannian geometry, SISSA, Trieste (2011). · Zbl 1236.53030
[8] A. A. Agrachev and D. Barilari, ”Sub-Riemannian structures on 3D Lie groups,” J. Dynam. Control Syst., 18, No. 1, 21–44 (2012). · Zbl 1244.53039 · doi:10.1007/s10883-012-9133-8
[9] A. A. Agrachev, D. Barilari, and U. Boscain, ”On the Hausdorff volume in sub-Riemannian geometry,” Calc. Var. Partial Differ. Equ., 43, Nos. 3–4, 355–388 (2012). · Zbl 1236.53030 · doi:10.1007/s00526-011-0414-y
[10] F. Baudoin, An Introduction to the Geometry of Stochastic Flows, Imperial College Press, London (2004). · Zbl 1085.60002
[11] F. Baudoin and M. Bonnefont, ”The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds,” Math. Z., 263, No. 3, 647–672 (2009). · Zbl 1189.58009 · doi:10.1007/s00209-008-0436-0
[12] F. Baudoin and N. Garofalo, Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries, arXiv:1101.3590 (2012). · Zbl 1359.53018
[13] R. Beals, B. Gaveau, and P. Greiner, ”The Green function of model step two hypoelliptic operators and the analysis of certain tangential Cauchy Riemann complexes,” Adv. Math., 121, No. 2, 288–345 (1996). · Zbl 0858.43009 · doi:10.1006/aima.1996.0054
[14] A. Bellaïche, ”The tangent space in sub-Riemannian geometry,” in: Prog. Math., 144, Birkhäuser, Basel (1996), pp. 1–78. · Zbl 0862.53031
[15] G. Ben Arous, ”Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus,” Ann. Sci. École Norm. Sup. (4), 21, No. 3, 307–331 (1988). · Zbl 0699.35047
[16] G. Ben Arous, ”Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale,” Ann. Inst. Fourier (Grenoble), 39, No. 1, 73–99 (1989). · Zbl 0659.35024 · doi:10.5802/aif.1158
[17] G. Ben Arous and R. Léandre, ”Décroissance exponentielle du noyau de la chaleur sur la diagonale. II,” Probab. Theory Relat. Fields, 90, No. 3, 377–402 (1991). · Zbl 0734.60027 · doi:10.1007/BF01193751
[18] M. Berger, P. Gauduchon, and E.Mazet, Le Spectre d’une Variété Riemannienne, Springer-Verlag, Berlin (1971). · Zbl 0223.53034
[19] J.-M. Bismut, Large Deviations and the Malliavin Calculus, Birkhäuser, Boston (1984). · Zbl 0537.35003
[20] R. W. Brockett and A.Mansouri, ”Short-time asymptotics of heat kernels for a class of hypoelliptic operators,” Am. J. Math., 131, No. 6, 1795–1814 (2009). · Zbl 1180.35177 · doi:10.1353/ajm.0.0081
[21] H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Springer-Verlag, Berlin (1987). · Zbl 0619.47005
[22] G. B. Folland, ”Subelliptic estimates and function spaces on nilpotent Lie groups,” Ark. Mat., 13, No. 2, 161–207 (1975). · Zbl 0312.35026 · doi:10.1007/BF02386204
[23] N. Garofalo and E. Lanconelli, ”Asymptotic behavior of fundamental solutions and potential theory of parabolic operators with variable coefficients,” Math. Ann., 283, No. 2, 211–239 (1989). · Zbl 0638.35003 · doi:10.1007/BF01446432
[24] B. Gaveau, ”Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents,” Acta Math., 139, Nos. 1–2, 95–153 (1977). · Zbl 0366.22010 · doi:10.1007/BF02392235
[25] L. Hörmander, ”Hypoelliptic second-order differential equations,” Acta Math., 119, 147–171 (1967). · Zbl 0156.10701 · doi:10.1007/BF02392081
[26] S. Kusuoka and D. Stroock, ”Applications of the Malliavin calculus. II,” J. Fac. Sci. Univ. Tokyo Sect. IA Math., 32, No. 1, 1–76 (1985). · Zbl 0568.60059
[27] R. Léandre, ”Développement asymptotique de la densité d’une diffusion dégénérée,” Forum Math., 4, No. 1, 45–75 (1992). · Zbl 0749.60054 · doi:10.1515/form.1992.4.45
[28] J. Mitchell, ”On Carnot–Carathéodory metrics,” J. Differ. Geom., 21, No. 1, 35–45 (1985). · Zbl 0554.53023
[29] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, American Mathematical Society, Providence (2002). · Zbl 1044.53022
[30] R. Neel and D. Stroock, ”Analysis of the cut locus via the heat kernel,” in: Surv. Differ. Geom., IX, Int. Press, Somerville (2004), pp. 337–349. · Zbl 1081.58013
[31] S. Rosenberg, The Laplacian on a Riemannian Manifold, Cambridge Univ. Press, Cambridge (1997). · Zbl 0868.58074
[32] R. S. Strichartz, ”Sub-Riemannian geometry,” J. Differ. Geom., 24, No. 2, 221–263 (1986). · Zbl 0609.53021
[33] T. Taylor, ”A parametrix for step-two hypoelliptic diffusion equations,” Trans. Am. Math. Soc., 296, No. 1, 191–215 (1986). · Zbl 0602.35021 · doi:10.1090/S0002-9947-1986-0837807-X
[34] T. J. S. Taylor, ”Off diagonal asymptotics of hypoelliptic diffusion equations and singular Riemannian geometry,” Pacific J. Math., 136, No. 2, 379–399 (1989). · Zbl 0692.35011 · doi:10.2140/pjm.1989.136.379
[35] Y. Yu, The Index Theorem and the Heat Equation Method, World Scientific Publishing, River Edge (2001). · Zbl 0986.58013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.