Skip to main content
Log in

Trace heat kernel asymptotics in 3D contact sub-Riemannian geometry

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we study the small time asymptotics for the heat kernel on a sub-Riemannian manifold, using a perturbative approach. We explicitly compute, in the case of a 3D contact structure, the first two coefficients of the small time asymptotics expansion of the heat kernel on the diagonal, expressing them in terms of the two basic functional invariants χand κ defined on a 3D contact structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Agrachev, R. V. Gamkrelidze, and A. V. Sarychev, “Local invariants of smooth control systems,” Acta Appl. Math., 14, No. 3, 191–237 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. A. Agrachev, “Exponential mappings for contact sub-Riemannian structures,” J. Dynam. Control Syst., 2, No. 3, 321–358 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. A. Agrachev, El-A. El-H. Chakir, and J.-P. Gauthier, “Sub-Riemannian metrics on R 3,” in: CMS Conf. Proc., 25, Amer. Math. Soc., Providence (1998), pp. 29–78.

  4. A. A. Agrachev and J.-P. A. Gauthier, “On the Dido problem and plane isoperimetric problems,” Acta Appl. Math., 57, No. 3, 287–338 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. A. Agrachev and Yu. L. Sachkov, “Control theory from the geometric viewpoint,” in: Encyclopaedia of Mathematical Sciences, 87, Springer-Verlag, Berlin (2004).

  6. A. Agrachev, U. Boscain, J.-P. Gauthier, and F. Rossi, “The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups,” J. Funct. Anal., 256, No. 8, 2621–2655 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. A. Agrachev, D. Barilari, and U. Boscain, Introduction to Riemannian and sub-Riemannian geometry, SISSA, Trieste (2011).

  8. A. A. Agrachev and D. Barilari, “Sub-Riemannian structures on 3D Lie groups,” J. Dynam. Control Syst., 18, No. 1, 21–44 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. A. Agrachev, D. Barilari, and U. Boscain, “On the Hausdorff volume in sub-Riemannian geometry,” Calc. Var. Partial Differ. Equ., 43, Nos. 3–4, 355–388 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Baudoin, An Introduction to the Geometry of Stochastic Flows, Imperial College Press, London (2004).

    Book  MATH  Google Scholar 

  11. F. Baudoin and M. Bonnefont, “The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds,” Math. Z., 263, No. 3, 647–672 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Baudoin and N. Garofalo, Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries, arXiv:1101.3590 (2012).

  13. R. Beals, B. Gaveau, and P. Greiner, “The Green function of model step two hypoelliptic operators and the analysis of certain tangential Cauchy Riemann complexes,” Adv. Math., 121, No. 2, 288–345 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Bellaïche, “The tangent space in sub-Riemannian geometry,” in: Prog. Math., 144, Birkhäuser, Basel (1996), pp. 1–78.

  15. G. Ben Arous, “Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus,” Ann. Sci. École Norm. Sup. (4), 21, No. 3, 307–331 (1988).

    MathSciNet  MATH  Google Scholar 

  16. G. Ben Arous, “Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale,” Ann. Inst. Fourier (Grenoble), 39, No. 1, 73–99 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Ben Arous and R. Léandre, “Décroissance exponentielle du noyau de la chaleur sur la diagonale. II,” Probab. Theory Relat. Fields, 90, No. 3, 377–402 (1991).

    Article  MATH  Google Scholar 

  18. M. Berger, P. Gauduchon, and E.Mazet, Le Spectre d’une Variété Riemannienne, Springer-Verlag, Berlin (1971).

    MATH  Google Scholar 

  19. J.-M. Bismut, Large Deviations and the Malliavin Calculus, Birkhäuser, Boston (1984).

    MATH  Google Scholar 

  20. R. W. Brockett and A.Mansouri, “Short-time asymptotics of heat kernels for a class of hypoelliptic operators,” Am. J. Math., 131, No. 6, 1795–1814 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  21. H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Springer-Verlag, Berlin (1987).

    MATH  Google Scholar 

  22. G. B. Folland, “Subelliptic estimates and function spaces on nilpotent Lie groups,” Ark. Mat., 13, No. 2, 161–207 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  23. N. Garofalo and E. Lanconelli, “Asymptotic behavior of fundamental solutions and potential theory of parabolic operators with variable coefficients,” Math. Ann., 283, No. 2, 211–239 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  24. B. Gaveau, “Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents,” Acta Math., 139, Nos. 1–2, 95–153 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Hörmander, “Hypoelliptic second-order differential equations,” Acta Math., 119, 147–171 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Kusuoka and D. Stroock, “Applications of the Malliavin calculus. II,” J. Fac. Sci. Univ. Tokyo Sect. IA Math., 32, No. 1, 1–76 (1985).

    MathSciNet  MATH  Google Scholar 

  27. R. Léandre, “Développement asymptotique de la densité d’une diffusion dégénérée,” Forum Math., 4, No. 1, 45–75 (1992).

    MathSciNet  MATH  Google Scholar 

  28. J. Mitchell, “On Carnot—Carathéodory metrics,” J. Differ. Geom., 21, No. 1, 35–45 (1985).

    MATH  Google Scholar 

  29. R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, American Mathematical Society, Providence (2002).

  30. R. Neel and D. Stroock, “Analysis of the cut locus via the heat kernel,” in: Surv. Differ. Geom., IX, Int. Press, Somerville (2004), pp. 337–349.

  31. S. Rosenberg, The Laplacian on a Riemannian Manifold, Cambridge Univ. Press, Cambridge (1997).

    Book  MATH  Google Scholar 

  32. R. S. Strichartz, “Sub-Riemannian geometry,” J. Differ. Geom., 24, No. 2, 221–263 (1986).

    MathSciNet  MATH  Google Scholar 

  33. T. Taylor, “A parametrix for step-two hypoelliptic diffusion equations,” Trans. Am. Math. Soc., 296, No. 1, 191–215 (1986).

    Article  MATH  Google Scholar 

  34. T. J. S. Taylor, “Off diagonal asymptotics of hypoelliptic diffusion equations and singular Riemannian geometry,” Pacific J. Math., 136, No. 2, 379–399 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  35. Y. Yu, The Index Theorem and the Heat Equation Method, World Scientific Publishing, River Edge (2001).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Barilari.

Additional information

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 82, Nonlinear Control and Singularities, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barilari, D. Trace heat kernel asymptotics in 3D contact sub-Riemannian geometry. J Math Sci 195, 391–411 (2013). https://doi.org/10.1007/s10958-013-1585-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-013-1585-1

Keywords

Navigation