×

Nonvanishing of Hecke \(L\)-functions for CM fields and ranks of Abelian varieties. (English) Zbl 1278.11057

Summary: In this paper we prove a nonvanishing theorem for central values of \(L\)-functions associated to a large class of algebraic Hecke characters of CM number fields. A key ingredient in the proof is an asymptotic formula for the average of these central values. We combine the nonvanishing theorem with work of Y. Tian and S.-W. Zhang [Kolyvagin systems of CM points on Shimura curves, preprint (2008)] to deduce that infinitely many of the CM abelian varieties associated to these Hecke characters have Mordell-Weil rank zero. Included among these abelian varieties are higher-dimensional analogues of the elliptic \(\mathbb Q\)-curves \(A(D)\) of B. H. Gross [Arithmetic on elliptic curves with complex multiplication. Lecture Notes in Mathematics. 776. Berlin etc.: Springer-Verlag (1980; Zbl 0433.14032)].

MSC:

11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11F27 Theta series; Weil representation; theta correspondences
11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces
11G10 Abelian varieties of dimension \(> 1\)
11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
11R80 Totally real fields

Citations:

Zbl 0433.14032
Full Text: DOI

References:

[1] Blomer V., Harcos G., Michel P.: Bounds for modular L-functions in the level aspect. Ann. Sci. École Norm. Sup. 40, 697–740 (2007) · Zbl 1185.11034
[2] Bruinier J.H., Yang T.H.: CM values of Hilbert modular functions. Invent. Math. 163, 229–288 (2006) · Zbl 1093.11041 · doi:10.1007/s00222-005-0459-7
[3] Clozel L., Ullmo E.: Équidistribution de mesures algébriques. Compos. Math. 141, 1255–1309 (2005) · Zbl 1077.22014 · doi:10.1112/S0010437X0500148X
[4] Cohen P.: Hyperbolic equidistribution problems on Siegel 3-folds and Hilbert modular varieties. Duke Math. J. 129, 87–127 (2005) · Zbl 1155.11326 · doi:10.1215/S0012-7094-04-12914-8
[5] Duke W., Friedlander J.B., Iwaniec H.: The subconvexity problem for Artin L-functions. Invent. Math. 149, 489–577 (2002) · Zbl 1056.11072 · doi:10.1007/s002220200223
[6] M. Einsiedler, E. Lindenstrauss, P. Michel, A. Venkatesh, Distribution of periodic torus orbits and Duke’s theorem for cubic fields, Ann. of Math., to appear. · Zbl 1248.37009
[7] Folsom A., Masri R.: Equidistribution of Heegner points and the partition function. Math. Ann. 348, 289–317 (2010) · Zbl 1227.11106 · doi:10.1007/s00208-010-0478-6
[8] Folsom A., Masri R.: The asymptotic distribution of traces of Maass–Poincaré series. Adv. Math. 226, 3724–3759 (2011) · Zbl 1270.11045 · doi:10.1016/j.aim.2010.11.001
[9] S. Gelbart, Weil’s Representation and the Spectrum of the Metaplectic Group, Springer Lect. Notes in Math. 530 (1976). · Zbl 0365.22017
[10] B. Gross, Arithmetic on elliptic curves with complex multiplication, appendix by B. Mazur, Springer Lect. Notes in Math. 776 (1980). · Zbl 0433.14032
[11] Kim B.D., Masri R., Yang T.H.: Nonvanishing of Hecke L-functions and the Bloch–Kato conjecture. Math. Ann. 349, 301–343 (2011) · Zbl 1235.11048 · doi:10.1007/s00208-010-0521-7
[12] V.A. Kolyvagin, D.Yu. Logachev, Finiteness of the Shafarevich-Tate group and the group of rational points for some modular abelian varieties (in Russian), Algebra i Analiz 1:5 (1989), 171–196; English translation, Leningrad Math. J. 1 (1990), 1229–1253.
[13] S. Kudla, M. Rapoport, T.H. Yang, Modular Forms and Special Cycles on Shimura Curves, Annals of Math. Studies Series 161, Princeton Univ. Publ. (2006). · Zbl 1157.11027
[14] Lang S.: Complex Multiplication. Springer-Verlag, New York (1983) · Zbl 0536.14029
[15] R. Masri, Asymptotics for sums of central values of canonical Hecke L-series, Int. Math. Res. Not. IMRN 19 (2007), Art. ID rnm065. · Zbl 1130.11021
[16] R. Masri, Quantitative nonvanishing of L-series associated to canonical Hecke characters, Int. Math. Res. Not. IMRN 19 (2007), Art. ID rnm070. · Zbl 1130.11022
[17] P. Michel, A. Venkatesh, Equidistribution, L-functions and ergodic theory: on some problems of Yu. Linnik, International Congress of Mathematicians II, Eur. Math. Soc., Zürich (2006). 421–457. · Zbl 1157.11019
[18] Michel P., Venkatesh A.: The subconvexity problem for GL2. Publ. Math. Inst. Hautes Études Sci. 111, 171–271 (2010) · Zbl 1376.11040 · doi:10.1007/s10240-010-0025-8
[19] Miller S.D., Yang T.H.: Nonvanishing of the central derivative of canonical Hecke L-functions. Math. Res. Lett. 7, 263–277 (2000) · Zbl 1025.11011 · doi:10.4310/MRL.2000.v7.n3.a2
[20] Montgomery H., Rohrlich D.: On the L-functions of canonical Hecke characters of imaginary quadratic fields. II, Duke Math. J. 49, 937–942 (1982) · Zbl 0523.12010 · doi:10.1215/S0012-7094-82-04945-6
[21] Rallis S.: On the Howe duality conjecture. Compositio Math 51, 333–399 (1984) · Zbl 0624.22011
[22] Rodriguez-Villegas F., Yang T.H.: Central values of Hecke L-functions of CM number fields. Duke Math. J. 98, 541–564 (1999) · Zbl 0965.11045 · doi:10.1215/S0012-7094-99-09817-4
[23] Rohrlich D.: The nonvanishing of certain Hecke L-functions at the center of the critical strip. Duke Math. J. 47, 223–232 (1980) · Zbl 0434.12007 · doi:10.1215/S0012-7094-80-04716-X
[24] Rohrlich D.: On the L-functions of canonical Hecke characters of imaginary quadratic fields. Duke Math. J. 47, 547–557 (1980) · Zbl 0446.12010 · doi:10.1215/S0012-7094-80-04733-X
[25] Rohrlich D.: Galois conjugacy of unramified twists of Hecke characters. Duke Math. J. 47, 695–703 (1980) · Zbl 0446.12011 · doi:10.1215/S0012-7094-80-04742-0
[26] Rohrlich D.: Root numbers of Hecke L-functions of CM fields. Amer. J. Math. 104, 517–543 (1982) · Zbl 0503.12008 · doi:10.2307/2374152
[27] Rubin K.: Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton–Dyer. Invent. Math. 64, 455–470 (1981) · Zbl 0506.14039 · doi:10.1007/BF01389277
[28] M. Schappacher, Periods of Hecke Characters, Springer Lect. Notes in Math. 1301 (1988) · Zbl 0659.14001
[29] G. Shimura, Abelian Varieties with Complex Multiplication and Modular Functions, Princeton Univ. Press, 1998. · Zbl 0908.11023
[30] Shimura G.: The special values of the zeta functions associated with cusp forms. Comm. Pure Appl. Math. 29, 783–804 (1976) · Zbl 0348.10015 · doi:10.1002/cpa.3160290618
[31] Stark H.: Some effective cases of the Brauer-Siegel theorem. Invent. Math. 23, 135–152 (1974) · Zbl 0278.12005 · doi:10.1007/BF01405166
[32] Templier N.: On asymptotic values of canonical quadratic L-functions. Int. J. Number Theory 6, 1717–1730 (2010) · Zbl 1219.11172 · doi:10.1142/S1793042110003678
[33] Y. Tian, S.W. Zhang, Kolyvagin systems of CM points on Shimura curves, preprint, 2008.
[34] Venkatesh A.: Sparse equidistribution problems, period bounds and subconvexity. Ann. of Math. 172, 989–1094 (2010) · Zbl 1214.11051 · doi:10.4007/annals.2010.172.989
[35] N.R. Wallach, Symplectic Geometry and Fourier Analysis, Lie Groups: History Frontiers and Applications, Vol. V, Math. Sci. Press, 1977.
[36] L. Washington, Introduction to Cyclotomic Fields, 2nd ed., Springer Graduate Texts in Mathematics 83 (1997). · Zbl 0966.11047
[37] Yang T.H.: Theta liftings and Hecke L-functions. J. Reine Angew. Math. 485, 25–53 (1997) · Zbl 0867.11037
[38] Yang T.H.: Nonvanishing of central Hecke L-values and rank of certain elliptic curves. Compositio Math. 117, 337–359 (1999) · Zbl 1073.11512 · doi:10.1023/A:1000934108242
[39] Yang T.H.: On CM abelian varieties over imaginary quadratic fields. Math. Ann. 329, 87–117 (2004) · Zbl 1088.11048 · doi:10.1007/s00208-004-0511-8
[40] S.W. Zhang, Equidistribution of CM-points on quaternion Shimura varieties, Int. Math. Res. Not. (2005), 3657–3689 · Zbl 1096.14016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.