×

Equidistribution of Heegner points and the partition function. (English) Zbl 1227.11106

Let \(p(n)\) be the number of partitions of \(n\). Let \(n>0\) such that \(D_n=24n-1\) is square free. The authors prove that there exists an effective constant \(c>0\) such that for all \(\varepsilon>0\) and \(0<b<\frac{1}{12c}\), \[ \begin{split} p(n)=\frac{1}{(24n-1)}\sum_{{z_Q\in{\Lambda_{D_n}(6)}\atop \text{Im}(z_Q)>1+(24n-1)^{-b}}}\chi_{12}(Q)\left(1-\frac{1}{2\pi\,\text{Im}(z_Q) }\right)e^{-2\pi i z_Q } \\ +O_{\varepsilon}\left(n^{-(\frac{7}{12}-bc)+\varepsilon}\right)+O_{\varepsilon}\left(n^{-(\frac{1}{2}+b)+\varepsilon}\right), n\to\infty. \end{split} \] Here \(\chi_{12}\) is the Legendre symbol acting on the set of positive definite, primitive, integral binary quadratic forms \(Q(x,y)=ax^2+bxy+cy^2\) of discriminant \(b^2-4ac=-D_n\) with \(6\mid a\), \(z_Q=\frac{-b+\sqrt{-D_n}}{12a}\), \(\Lambda_{D_n}(6)\) is the set of Heegner points of discriminant \(-D_n\) on \(X_0(6)\). This is used to sharpen the classical bounds of Hardy and Ramanujan, Rademacher, and Lehmer on the error term in Rademacher’s exact formula for \(p(n)\).

MSC:

11P82 Analytic theory of partitions
Full Text: DOI

References:

[1] Bringmann K., Ono K.: An arithmetic formula for the partition function. Proc. Am. Math. Soc. 135, 3507–3514 (2007) · Zbl 1156.11040 · doi:10.1090/S0002-9939-07-08883-1
[2] Cogdell, J., Piatetski-Shapiro, I.: The arithmetic and spectral analysis of Poincaré series. Perspectives in Mathematics, vol. 13. Academic Press, Inc., Boston, pp. vi+182 (1990) · Zbl 0714.11032
[3] Conrey B., Iwaniec H.: The cubic moment of central values of automorphic L-functions. Ann. Math. 151, 1175–1216 (2000) · Zbl 0973.11056 · doi:10.2307/121132
[4] Darmon, H.: Heegner points, Heegner cycles, and congruences. Elliptic curves and related topics, pp. 45–59. CRM Proc. Lecture Notes, vol. 4. American Mathematical Society, Providence (1994) · Zbl 0813.11036
[5] Duke W.: Hyperbolic distribution problems and half-integral weight Maass forms. Invent. Math. 92, 73–90 (1988) · Zbl 0628.10029 · doi:10.1007/BF01393993
[6] Duke W.: Modular functions and the uniform distribution of CM points. Math. Ann. 334, 241–252 (2006) · Zbl 1091.11012 · doi:10.1007/s00208-005-0706-7
[7] Folsom, A., Masri, R.: The limiting distribution of traces of Maass–Poincaré series (submitted) · Zbl 1270.11045
[8] Gross B., Kohnen W., Zagier D.: Heegner points and derivatives of L-series, II. Math. Ann. 278, 497–562 (1987) · Zbl 0641.14013 · doi:10.1007/BF01458081
[9] Gross B., Zagier D.: Heegner points and derivatives of L-series. Invent. Math. 84, 225–320 (1986) · Zbl 0608.14019 · doi:10.1007/BF01388809
[10] Harcos, G.: Equidistribution on the modular surface and L-functions, notes for two lectures given at the 2007 summer school ”Homogeneous Flows, Moduli Spaces and Arithmetic” in Pisa, Italy. Available at http://www.renyi.hu/gharcos/heegner.pdf
[11] Harcos G., Michel P.: The subconvexity problem for Rankin–Selberg L–functions and equidistribution of Heegner points, II. Invent. Math. 163, 581–655 (2006) · Zbl 1111.11027 · doi:10.1007/s00222-005-0468-6
[12] Hardy, G.H., Ramanujan, S.: Une formule asymptotique pour le nombre des partitions de n. Comptes Rendus, vol. 2 (1917), found in Collected papers of Srinivasa Ramanujan, pp. 239–241. AMS Chelsea Publ., Providence (2000) · JFM 46.0198.01
[13] Iwaniec, H.: Spectral methods of automorphic forms, 2nd edn. Graduate Studies in Mathematics, vol. 53. American Mathematical Society, Providence; Revista Matematica Iberoamericana, Madrid (2002) · Zbl 1006.11024
[14] Iwaniec, H.: Topics in classical automorphic forms. Graduate Studies in Mathematics, vol. 17, pp. xii+259. American Mathematical Society, Providence (1997) · Zbl 0905.11023
[15] Iwaniec, H., Kowalski, E.: Analytic number theory. American Mathematical Society Colloquium Publications, vol. 53, pp. xii+615. American Mathematical Society, Providence (2004) · Zbl 1059.11001
[16] Lehmer D.H.: On the remainders and convergence of the series for the partition function. Trans. Am. Math. Soc. 46, 362–373 (1939) · Zbl 0022.20401
[17] Lehmer D.H.: On the series for the partition function. Trans. Am. Math. Soc. 43, 271–295 (1938) · Zbl 0018.10703 · doi:10.1090/S0002-9947-1938-1501943-5
[18] Michel, P.: Analytic number theory and families of automorphic L-functions. In: Automorphic forms and applications, pp. 181–295, IAS/Park City Math. Ser., 12. American Mathematical Society, Providence. Available at http://tan.epfl.ch/pmichel/PAPERS/Parkcitylectures.pdf (2007) · Zbl 1168.11016
[19] Niebur D.: A class of nonanalytic automorphic functions. Nagoya Math. J. 52, 133–145 (1973) · Zbl 0288.10010
[20] Ono, K.: Unearthing the visions of a master: harmonic Maass forms and number theory (preprint) · Zbl 1229.11074
[21] Rademacher H.: On the expansion of the partition function in a series. Ann. Math. 44, 416–422 (1943) · Zbl 0060.10005 · doi:10.2307/1968973
[22] Rademacher, H.: Topics in analytic number theory. In: Grosswald, E., Lehner, J., Newman, M. (eds.) Die Grundlehren der mathematischen Wissenschaften, Band 169, pp. ix+320. Springer, New York (1973) · Zbl 0253.10002
[23] Selberg, A.: Collected papers, vol. I. With a foreword by K. Chandrasekharan, pp. vi+711. Springer, Berlin (1989) · Zbl 0675.10001
[24] Waldspurger J.-L.: Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie. Compos. Math. 54, 173–242 (1985) · Zbl 0567.10021
[25] Watson G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge at the University Press, Cambridge (1966) · Zbl 0174.36202
[26] Zhang S.: Gross–Zagier formula for GL 2. Asian J. Math. 5, 183–290 (2001) · Zbl 1111.11030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.