×

Curvature, sphere theorems, and the Ricci flow. (English) Zbl 1251.53020

Summary: In 1926, Hopf proved that any compact, simply connected Riemannian manifold with constant curvature 1 is isometric to the standard sphere. Motivated by this result, Hopf posed the question whether a compact, simply connected manifold with suitably pinched curvature is topologically a sphere.
In the first part of this paper, we provide a background discussion, aimed at nonexperts, of Hopf’s pinching problem and the Sphere Theorem. In the second part, we sketch the proof of the differentiable sphere theorem, and discuss various related results. These results employ a variety of methods, including geodesic and minimal surface techniques as well as Hamilton’s Ricci flow.

MSC:

53C20 Global Riemannian geometry, including pinching
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
53C24 Rigidity results
53C43 Differential geometric aspects of harmonic maps
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
35K55 Nonlinear parabolic equations

References:

[1] Uwe Abresch and Wolfgang T. Meyer, A sphere theorem with a pinching constant below 1\over4, J. Differential Geom. 44 (1996), no. 2, 214 – 261. · Zbl 0873.53024
[2] Simon Aloff and Nolan R. Wallach, An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures, Bull. Amer. Math. Soc. 81 (1975), 93 – 97. · Zbl 0362.53033
[3] Ben Andrews, Contraction of convex hypersurfaces in Riemannian spaces, J. Differential Geom. 39 (1994), no. 2, 407 – 431. · Zbl 0797.53044
[4] Ben Andrews and Huy Nguyen, Four-manifolds with 1/4-pinched flag curvatures, Asian J. Math. 13 (2009), no. 2, 251 – 270. · Zbl 1187.53066 · doi:10.4310/AJM.2009.v13.n2.a5
[5] John C. Baez, The octonions, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 2, 145 – 205. · Zbl 1026.17001
[6] I. Bakas, S. Kong, and L. Ni, Ancient solutions of Ricci flow on spheres and generalized Hopf fibrations, arxiv:0906.0589
[7] Shigetoshi Bando, On the classification of three-dimensional compact Kaehler manifolds of nonnegative bisectional curvature, J. Differential Geom. 19 (1984), no. 2, 283 – 297. · Zbl 0547.53034
[8] Ya. V. Bazaĭkin, On a family of 13-dimensional closed Riemannian manifolds of positive curvature, Sibirsk. Mat. Zh. 37 (1996), no. 6, 1219 – 1237, ii (Russian, with Russian summary); English transl., Siberian Math. J. 37 (1996), no. 6, 1068 – 1085. · Zbl 0874.53034 · doi:10.1007/BF02106732
[9] Pierre H. Bérard, From vanishing theorems to estimating theorems: the Bochner technique revisited, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 371 – 406. · Zbl 0662.53037
[10] L. Berard-Bergery, Les variétés riemanniennes homogènes simplement connexes de dimension impaire à courbure strictement positive, J. Math. Pures Appl. (9) 55 (1976), no. 1, 47 – 67 (French). · Zbl 0289.53037
[11] Marcel Berger, Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955), 279 – 330 (French). · Zbl 0068.36002
[12] M. Berger, Les variétés Riemanniennes (1/4)-pincées, Ann. Scuola Norm. Sup. Pisa (3) 14 (1960), 161 – 170 (French). · Zbl 0096.15502
[13] Marcel Berger, Sur quelques variétés riemanniennes suffisamment pincées, Bull. Soc. Math. France 88 (1960), 57 – 71 (French). · Zbl 0096.15503
[14] M. Berger, Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive, Ann. Scuola Norm. Sup. Pisa (3) 15 (1961), 179 – 246 (French). · Zbl 0101.14201
[15] Marcel Berger, Sur quelques variétés d’Einstein compactes, Ann. Mat. Pura Appl. (4) 53 (1961), 89 – 95 (French). · Zbl 0115.39301 · doi:10.1007/BF02417787
[16] M. Berger, Sur les variétés d’Einstein compactes, Comptes Rendus de la IIIe Réunion du Groupement des Mathématiciens d’Expression Latine (Namur, 1965) Librairie Universitaire, Louvain, 1966, pp. 35 – 55 (French).
[17] Marcel Berger, Trois remarques sur les variétés riemanniennes à courbure positive, C. R. Acad. Sci. Paris Sér. A-B 263 (1966), A76 – A78 (French). · Zbl 0143.45001
[18] Marcel Berger, Sur les variétés riemanniennes pincées juste au-dessous de 1/4, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 2, 135 – 150 (loose errata) (French). · Zbl 0497.53044
[19] Marcel Berger, A panoramic view of Riemannian geometry, Springer-Verlag, Berlin, 2003. · Zbl 1038.53002
[20] Arthur L. Besse, Einstein manifolds, Classics in Mathematics, Springer-Verlag, Berlin, 2008. Reprint of the 1987 edition. · Zbl 1147.53001
[21] Gérard Besson, Preuve de la conjecture de Poincaré en déformant la métrique par la courbure de Ricci (d’après G. Perel\(^{\prime}\)man), Astérisque 307 (2006), Exp. No. 947, ix, 309 – 347 (French, with French summary). Séminaire Bourbaki. Vol. 2004/2005. · Zbl 1181.53055
[22] G. Besson, Le théorème de la sphère différentiable (d’après S. Brendle et R. Schoen), Séminaire Bourbaki, 61ème année, 2008/2009, no. 1003 (March 2009).
[23] Christoph Böhm and Burkhard Wilking, Manifolds with positive curvature operators are space forms, Ann. of Math. (2) 167 (2008), no. 3, 1079 – 1097. · Zbl 1185.53073 · doi:10.4007/annals.2008.167.1079
[24] Jean-Michel Bony, Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), no. fasc. 1, 277 – 304 xii (French, with English summary). · Zbl 0176.09703
[25] Jean-Pierre Bourguignon, La conjecture de Hopf sur \?²\times \?², Riemannian geometry in dimension 4 (Paris, 1978/1979) Textes Math., vol. 3, CEDIC, Paris, 1981, pp. 347 – 355 (French).
[26] Simon Brendle, A general convergence result for the Ricci flow in higher dimensions, Duke Math. J. 145 (2008), no. 3, 585 – 601. · Zbl 1161.53052 · doi:10.1215/00127094-2008-059
[27] Simon Brendle, A generalization of Hamilton’s differential Harnack inequality for the Ricci flow, J. Differential Geom. 82 (2009), no. 1, 207 – 227. · Zbl 1169.53050
[28] Simon Brendle, Einstein manifolds with nonnegative isotropic curvature are locally symmetric, Duke Math. J. 151 (2010), no. 1, 1 – 21. · Zbl 1189.53042 · doi:10.1215/00127094-2009-061
[29] S. Brendle, Einstein metrics and preserved curvature conditions for the Ricci flow, Proceedings of Conference on Complex and Differential Geometry, Hannover (to appear). · Zbl 1228.53059
[30] Simon Brendle, Ricci flow and the sphere theorem, Graduate Studies in Mathematics, vol. 111, American Mathematical Society, Providence, RI, 2010. · Zbl 1196.53001
[31] S. Brendle, G. Huisken, and C. Sinestrari, Ancient solutions to the Ricci flow with pinched curvature, arxiv:0912.0498 · Zbl 1219.53062
[32] Simon Brendle and Richard Schoen, Manifolds with 1/4-pinched curvature are space forms, J. Amer. Math. Soc. 22 (2009), no. 1, 287 – 307. · Zbl 1251.53021
[33] Simon Brendle and Richard M. Schoen, Classification of manifolds with weakly 1/4-pinched curvatures, Acta Math. 200 (2008), no. 1, 1 – 13. · Zbl 1157.53020 · doi:10.1007/s11511-008-0022-7
[34] Simon Brendle and Richard Schoen, Sphere theorems in geometry, Surveys in differential geometry. Vol. XIII. Geometry, analysis, and algebraic geometry: forty years of the Journal of Differential Geometry, Surv. Differ. Geom., vol. 13, Int. Press, Somerville, MA, 2009, pp. 49 – 84. · Zbl 1184.53037 · doi:10.4310/SDG.2008.v13.n1.a2
[35] Egbert V. Brieskorn, Examples of singular normal complex spaces which are topological manifolds, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 1395 – 1397. · Zbl 0144.45001
[36] Egbert Brieskorn, Beispiele zur Differentialtopologie von Singularitäten, Invent. Math. 2 (1966), 1 – 14 (German). · Zbl 0145.17804 · doi:10.1007/BF01403388
[37] Huai Dong Cao, On Harnack’s inequalities for the Kähler-Ricci flow, Invent. Math. 109 (1992), no. 2, 247 – 263. · Zbl 0779.53043 · doi:10.1007/BF01232027
[38] H.D. Cao and R. Hamilton, unpublished manuscript.
[39] Jianguo Cao, Certain 4-manifolds with non-negative sectional curvature, Front. Math. China 3 (2008), no. 4, 475 – 494. · Zbl 1167.53035 · doi:10.1007/s11464-008-0037-6
[40] Jianguo Cao and Hongyan Tang, An intrinsic proof of Gromoll-Grove diameter rigidity theorem, Commun. Contemp. Math. 9 (2007), no. 3, 401 – 419. · Zbl 1151.53027 · doi:10.1142/S0219199707002472
[41] Sylvain E. Cappell and Julius L. Shaneson, Some new four-manifolds, Ann. of Math. (2) 104 (1976), no. 1, 61 – 72. · Zbl 0345.57003 · doi:10.2307/1971056
[42] A. Chang, M. Gursky, and P. Yang, A conformally invariant sphere theorem in four dimensions, Publ. Math. IHÉS 98 (2003), 105-143. · Zbl 1066.53079
[43] Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997), no. 3, 406 – 480. · Zbl 0902.53034
[44] Jeff Cheeger and David G. Ebin, Comparison theorems in Riemannian geometry, AMS Chelsea Publishing, Providence, RI, 2008. Revised reprint of the 1975 original. · Zbl 1142.53003
[45] Bing-Long Chen and Xi-Ping Zhu, Complete Riemannian manifolds with pointwise pinched curvature, Invent. Math. 140 (2000), no. 2, 423 – 452. · Zbl 0957.53011 · doi:10.1007/s002220000061
[46] Haiwen Chen, Pointwise \frac14-pinched 4-manifolds, Ann. Global Anal. Geom. 9 (1991), no. 2, 161 – 176. · Zbl 0752.53021 · doi:10.1007/BF00776854
[47] Dennis M. DeTurck, Deforming metrics in the direction of their Ricci tensors, J. Differential Geom. 18 (1983), no. 1, 157 – 162. · Zbl 0517.53044
[48] P. Daskalopoulos, R. Hamilton, and N. Šešum, Classification of compact ancient solutions to the Ricci flow on surfaces, preprint (2009).
[49] J.-H. Eschenburg, New examples of manifolds with strictly positive curvature, Invent. Math. 66 (1982), no. 3, 469 – 480. · Zbl 0484.53031 · doi:10.1007/BF01389224
[50] J.-H. Eschenburg, Local convexity and nonnegative curvature — Gromov’s proof of the sphere theorem, Invent. Math. 84 (1986), no. 3, 507 – 522. · Zbl 0594.53034 · doi:10.1007/BF01388744
[51] J.-H. Eschenburg and M. Kerin, Almost positive curvature on the Gromoll-Meyer sphere, Proc. Amer. Math. Soc. 136 (2008), no. 9, 3263 – 3270. · Zbl 1153.53023
[52] F. T. Farrell and L. E. Jones, Negatively curved manifolds with exotic smooth structures, J. Amer. Math. Soc. 2 (1989), no. 4, 899 – 908. · Zbl 0698.53027
[53] V. A. Fateev, The sigma model (dual) representation for a two-parameter family of integrable quantum field theories, Nuclear Phys. B 473 (1996), no. 3, 509 – 538. · Zbl 0925.81297 · doi:10.1016/0550-3213(96)00256-8
[54] Ronald Fintushel and Ronald J. Stern, An exotic free involution on \?\(^{4}\), Ann. of Math. (2) 113 (1981), no. 2, 357 – 365. · Zbl 0474.57014 · doi:10.2307/2006987
[55] Ailana M. Fraser, Fundamental groups of manifolds with positive isotropic curvature, Ann. of Math. (2) 158 (2003), no. 1, 345 – 354. · Zbl 1044.53023 · doi:10.4007/annals.2003.158.345
[56] Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), no. 3, 357 – 453. · Zbl 0528.57011
[57] Siddartha Gadgil and Harish Seshadri, On the topology of manifolds with positive isotropic curvature, Proc. Amer. Math. Soc. 137 (2009), no. 5, 1807 – 1811. · Zbl 1166.53026
[58] Detlef Gromoll, Differenzierbare Strukturen und Metriken positiver Krümmung auf Sphären, Math. Ann. 164 (1966), 353 – 371 (German). · Zbl 0135.40301 · doi:10.1007/BF01350046
[59] Detlef Gromoll and Karsten Grove, A generalization of Berger’s rigidity theorem for positively curved manifolds, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 2, 227 – 239. · Zbl 0626.53032
[60] Detlef Gromoll and Wolfgang Meyer, An exotic sphere with nonnegative sectional curvature, Ann. of Math. (2) 100 (1974), 401 – 406. · Zbl 0293.53015 · doi:10.2307/1971078
[61] Michael Gromov, Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981), no. 2, 179 – 195. · Zbl 0467.53021 · doi:10.1007/BF02566208
[62] M. Gromov, Sign and geometric meaning of curvature, Rend. Sem. Mat. Fis. Milano 61 (1991), 9 – 123 (1994) (English, with English and Italian summaries). · Zbl 0820.53035 · doi:10.1007/BF02925201
[63] M. Gromov, Positive curvature, macroscopic dimension, spectral gaps and higher signatures, Functional analysis on the eve of the 21st century, Vol. II (New Brunswick, NJ, 1993) Progr. Math., vol. 132, Birkhäuser Boston, Boston, MA, 1996, pp. 1 – 213. · Zbl 1262.90126 · doi:10.1007/s10107-010-0354-x
[64] M. Gromov and W. Thurston, Pinching constants for hyperbolic manifolds, Invent. Math. 89 (1987), no. 1, 1 – 12. · Zbl 0646.53037 · doi:10.1007/BF01404671
[65] Karsten Grove, Hermann Karcher, and Ernst A. Ruh, Group actions and curvature, Invent. Math. 23 (1974), 31 – 48. · Zbl 0271.53044 · doi:10.1007/BF01405201
[66] Karsten Grove, Hermann Karcher, and Ernst A. Ruh, Jacobi fields and Finsler metrics on compact Lie groups with an application to differentiable pinching problems, Math. Ann. 211 (1974), 7 – 21. · Zbl 0273.53051 · doi:10.1007/BF01344138
[67] Karsten Grove and Katsuhiro Shiohama, A generalized sphere theorem, Ann. of Math. (2) 106 (1977), no. 2, 201 – 211. · Zbl 0341.53029 · doi:10.2307/1971164
[68] Hui-Ling Gu, A new proof of Mok’s generalized Frankel conjecture theorem, Proc. Amer. Math. Soc. 137 (2009), no. 3, 1063 – 1068. · Zbl 1165.53024
[69] Matthew J. Gursky and Claude Lebrun, On Einstein manifolds of positive sectional curvature, Ann. Global Anal. Geom. 17 (1999), no. 4, 315 – 328. · Zbl 0967.53029 · doi:10.1023/A:1006597912184
[70] Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255 – 306. · Zbl 0504.53034
[71] Richard S. Hamilton, Four-manifolds with positive curvature operator, J. Differential Geom. 24 (1986), no. 2, 153 – 179. · Zbl 0628.53042
[72] Richard S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986) Contemp. Math., vol. 71, Amer. Math. Soc., Providence, RI, 1988, pp. 237 – 262. · doi:10.1090/conm/071/954419
[73] Richard S. Hamilton, The Harnack estimate for the Ricci flow, J. Differential Geom. 37 (1993), no. 1, 225 – 243. · Zbl 0804.53023
[74] Richard S. Hamilton, Eternal solutions to the Ricci flow, J. Differential Geom. 38 (1993), no. 1, 1 – 11. · Zbl 0792.53041
[75] Richard S. Hamilton, Convex hypersurfaces with pinched second fundamental form, Comm. Anal. Geom. 2 (1994), no. 1, 167 – 172. · Zbl 0843.53002 · doi:10.4310/CAG.1994.v2.n1.a10
[76] Richard S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993) Int. Press, Cambridge, MA, 1995, pp. 7 – 136. · Zbl 0867.53030
[77] Richard S. Hamilton, Four-manifolds with positive isotropic curvature, Comm. Anal. Geom. 5 (1997), no. 1, 1 – 92. · Zbl 0892.53018 · doi:10.4310/CAG.1997.v5.n1.a1
[78] Friedrich Hirzebruch, Singularities and exotic spheres, Séminaire Bourbaki, Vol. 10, Soc. Math. France, Paris, 1995, pp. Exp. No. 314, 13 – 32. · Zbl 0213.47701
[79] Nigel Hitchin, Harmonic spinors, Advances in Math. 14 (1974), 1 – 55. · Zbl 0284.58016 · doi:10.1016/0001-8708(74)90021-8
[80] Heinz Hopf, Zum Clifford-Kleinschen Raumproblem, Math. Ann. 95 (1926), no. 1, 313 – 339 (German). · JFM 51.0439.05 · doi:10.1007/BF01206614
[81] H. Hopf, Differentialgeometrie und topologische Gestalt, Jahresber. Deutsch. Math.-Verein. 41 (1932), 209-229. · JFM 58.0776.02
[82] Wu-Yi Hsiang and Bruce Kleiner, On the topology of positively curved 4-manifolds with symmetry, J. Differential Geom. 29 (1989), no. 3, 615 – 621. · Zbl 0674.53047
[83] Gerhard Huisken, Ricci deformation of the metric on a Riemannian manifold, J. Differential Geom. 21 (1985), no. 1, 47 – 62. · Zbl 0606.53026
[84] Hans-Christoph Im Hof and Ernst A. Ruh, An equivariant pinching theorem, Comment. Math. Helv. 50 (1975), no. 3, 389 – 401. · Zbl 0317.53043 · doi:10.1007/BF02565758
[85] M. Joachim and D. J. Wraith, Exotic spheres and curvature, Bull. Amer. Math. Soc. (N.S.) 45 (2008), no. 4, 595 – 616. · Zbl 1149.53020
[86] Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504 – 537. · Zbl 0115.40505 · doi:10.2307/1970128
[87] Wilhelm Klingenberg, Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung, Comment. Math. Helv. 35 (1961), 47 – 54 (German). · Zbl 0133.15005 · doi:10.1007/BF02567004
[88] Bernhard Leeb, Geometrization of 3-dimensional manifolds and Ricci flow: on Perelman’s proof of the conjectures of Poincaré and Thurston, Boll. Unione Mat. Ital. (9) 1 (2008), no. 1, 41 – 55. · Zbl 1201.57010
[89] Christophe Margerin, Pointwise pinched manifolds are space forms, Geometric measure theory and the calculus of variations (Arcata, Calif., 1984) Proc. Sympos. Pure Math., vol. 44, Amer. Math. Soc., Providence, RI, 1986, pp. 307 – 328. · Zbl 0587.53042 · doi:10.1090/pspum/044/840282
[90] Christophe Margerin, A sharp characterization of the smooth 4-sphere in curvature terms, Comm. Anal. Geom. 6 (1998), no. 1, 21 – 65. · Zbl 0966.53022 · doi:10.4310/CAG.1998.v6.n1.a2
[91] D. Máximo, Non-negative Ricci curvature on closed manifolds under Ricci flow, preprint (2009). · Zbl 1215.53062
[92] Daniel Meyer, Sur les variétés riemanniennes à opérateur de courbure positif, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A482 – A485 (French). · Zbl 0209.25301
[93] Mario J. Micallef and John Douglas Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2) 127 (1988), no. 1, 199 – 227. · Zbl 0661.53027 · doi:10.2307/1971420
[94] Mario J. Micallef and McKenzie Y. Wang, Metrics with nonnegative isotropic curvature, Duke Math. J. 72 (1993), no. 3, 649 – 672. · Zbl 0804.53058 · doi:10.1215/S0012-7094-93-07224-9
[95] John Milnor, On manifolds homeomorphic to the 7-sphere, Ann. of Math. (2) 64 (1956), 399 – 405. · Zbl 0072.18402 · doi:10.2307/1969983
[96] Ngaiming Mok, The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature, J. Differential Geom. 27 (1988), no. 2, 179 – 214. · Zbl 0642.53071
[97] Huy T. Nguyen, Isotropic curvature and the Ricci flow, Int. Math. Res. Not. IMRN 3 (2010), 536 – 558. · Zbl 1190.53068 · doi:10.1093/imrn/rnp147
[98] Lei Ni and Baoqiang Wu, Complete manifolds with nonnegative curvature operator, Proc. Amer. Math. Soc. 135 (2007), no. 9, 3021 – 3028. · Zbl 1127.58022
[99] Seiki Nishikawa, Deformation of Riemannian metrics and manifolds with bounded curvature ratios, Geometric measure theory and the calculus of variations (Arcata, Calif., 1984) Proc. Sympos. Pure Math., vol. 44, Amer. Math. Soc., Providence, RI, 1986, pp. 343 – 352. · Zbl 0589.53046 · doi:10.1090/pspum/044/840284
[100] Yukio Otsu, Katsuhiro Shiohama, and Takao Yamaguchi, A new version of differentiable sphere theorem, Invent. Math. 98 (1989), no. 2, 219 – 228. · Zbl 0688.53016 · doi:10.1007/BF01388850
[101] Pierre Pansu, Pincement des variétés à courbure négative d’après M. Gromov et W. Thurston, Séminaire de Théorie Spectrale et Géométrie, No. 4, Année 1985 – 1986, Univ. Grenoble I, Saint-Martin-d’Hères, 1986, pp. 101 – 113 (French). · Zbl 1066.53509
[102] G. Perelman, Manifolds of positive Ricci curvature with almost maximal volume, J. Amer. Math. Soc. 7 (1994), no. 2, 299 – 305. · Zbl 0799.53050
[103] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arxiv:0211159 · Zbl 1130.53001
[104] G. Perelman, Ricci flow with surgery on three-manifolds, arxiv:0303109 · Zbl 1130.53002
[105] G. Perelman, Finite extinction time for solutions to the Ricci flow on certain three-manifolds, arxiv:0307245 · Zbl 1130.53003
[106] Peter Petersen and Terence Tao, Classification of almost quarter-pinched manifolds, Proc. Amer. Math. Soc. 137 (2009), no. 7, 2437 – 2440. · Zbl 1168.53020
[107] H. E. Rauch, A contribution to differential geometry in the large, Ann. of Math. (2) 54 (1951), 38 – 55. · Zbl 0043.37202 · doi:10.2307/1969309
[108] Ernst A. Ruh, Krümmung und differenzierbare Struktur auf Sphären. II, Math. Ann. 205 (1973), 113 – 129 (German). · Zbl 0273.53035 · doi:10.1007/BF01350841
[109] Ernst A. Ruh, Riemannian manifolds with bounded curvature ratios, J. Differential Geom. 17 (1982), no. 4, 643 – 653 (1983). · Zbl 0508.53053
[110] R. Schoen and S. T. Yau, Lectures on harmonic maps, Conference Proceedings and Lecture Notes in Geometry and Topology, II, International Press, Cambridge, MA, 1997. · Zbl 0886.53004
[111] Walter Seaman, A pinching theorem for four manifolds, Geom. Dedicata 31 (1989), no. 1, 37 – 40. · Zbl 0683.53041 · doi:10.1007/BF00184157
[112] H. Seshadri, Manifolds with nonnegative isotropic curvature, Comm. Anal. Geom. 17 (2009), 621-635. · Zbl 1197.53047
[113] H. Seshadri, Almost-Einstein manifolds with nonnegative isotropic curvature, preprint (2009) · Zbl 1197.53047
[114] Nataša Šešum, Curvature tensor under the Ricci flow, Amer. J. Math. 127 (2005), no. 6, 1315 – 1324. · Zbl 1093.53070
[115] Yum Tong Siu and Shing Tung Yau, Compact Kähler manifolds of positive bisectional curvature, Invent. Math. 59 (1980), no. 2, 189 – 204. · Zbl 0442.53056 · doi:10.1007/BF01390043
[116] Stephen Smale, Generalized Poincaré’s conjecture in dimensions greater than four, Ann. of Math. (2) 74 (1961), 391 – 406. · Zbl 0099.39202 · doi:10.2307/1970239
[117] Stephan Stolz, Simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 136 (1992), no. 3, 511 – 540. · Zbl 0784.53029 · doi:10.2307/2946598
[118] M. Sugimoto and K. Shiohama, On the differentiable pinching problem, Math. Ann. 195 (1971), 1 – 16. Improved by H. Karcher. · Zbl 0218.53063 · doi:10.1007/BF02059412
[119] Shun-ichi Tachibana, A theorem of Riemannian manifolds of positive curvature operator, Proc. Japan Acad. 50 (1974), 301 – 302. · Zbl 0299.53031
[120] Heinrich Tietze, Über die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten, Monatsh. Math. Phys. 19 (1908), no. 1, 1 – 118 (German). · doi:10.1007/BF01736688
[121] Marina Ville, Les variétés Riemanniennes de dimension 4 4\over19-pincées, Ann. Inst. Fourier (Grenoble) 39 (1989), no. 1, 149 – 154 (French, with English summary). · Zbl 0658.53032
[122] Nolan R. Wallach, Compact homogeneous Riemannian manifolds with strictly positive curvature, Ann. of Math. (2) 96 (1972), 277 – 295. · Zbl 0261.53033 · doi:10.2307/1970789
[123] Frederick Wilhelm, An exotic sphere with positive curvature almost everywhere, J. Geom. Anal. 11 (2001), no. 3, 519 – 560. · Zbl 1039.53037 · doi:10.1007/BF02922018
[124] Joseph A. Wolf, Spaces of constant curvature, 5th ed., Publish or Perish, Inc., Houston, TX, 1984. · Zbl 1216.53003
[125] DaGang Yang, Rigidity of Einstein 4-manifolds with positive curvature, Invent. Math. 142 (2000), no. 2, 435 – 450. · Zbl 0981.53025 · doi:10.1007/PL00005792
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.