×

Negatively curved manifolds with exotic smooth structures. (English) Zbl 0698.53027

The main result of this paper is the following Theorem: Let M denote a compact Riemannian manifold of dimension \(m\geq 5\) and with sectional curvature \(K\equiv -1\). Let \(\Sigma_ 1,...,\Sigma_ k\) be a complete list of inequivalent exotic spheres of dimension m. Then given any real number \(\delta >0\), there is a finite sheeted covering \(M^*\) of M that satisfies the following properties: (a) No two of the manifolds \(M^*,M^*\#\Sigma_ 1,...,M^*\#\Sigma_ k\) are diffeomorphic, but they all are homeomorphic to one another, where # denotes connected sum. (b) Each of the manifolds \(M^*\#\Sigma_ 1,...,M^*\#\Sigma_ k\) admits a Riemannian metric with sectional curvatures lying in the interval \([-1-\delta,-1+\delta].\)
Remarks: 1) None of the manifolds \(M^*\#\Sigma_ 1,...,M^*\#\Sigma_ k\) admits a metric with constant negative sectional curvature; if one did, it would be diffeomorphic (in fact isometric) to \(M^*\) by the Mostow Rigidity Theorem. 2) In another work [J. Am. Math. Soc. 2, No.2, 257-369 (1989)] the authors have shown that if two manifolds of strictly negative sectional curvature have the same homotopy type, then they are homeomorphic, thereby solving an old problem. 3) As \(\delta\) \(\to 0\) the multiplicity of the covering \(M^*\to \infty\) by the compactness theorem of Cheeger and Gromov. 4) Earlier M. Gromov and W. Thurston [Invent. Math. 89, 1-12 (1987; Zbl 0646.53037)] by another method had found examples of compact manifolds with sectional curvatures arbitrarily close to -1 that admit no metrics of constant negative sectional curvature.
To prove a) one begins with a result of Sullivan, which shows that some finite covering space \(M^*\) of M is stably parallelizable. A further topological argument completes the proof of a). To prove b) one uses residual finiteness of \(\pi_ 1M\) to construct a finite covering \(M^*\) of large multiplicity with the property that every point x of M lies in an imbedded metric ball of prescribed radius \(3\alpha\). Consider such a ball \(B_{3\alpha}=S^{m-1}\times [0,3\alpha].\) Given an exotic m- sphere \(\Sigma_ k\) one constructs \(M^*\#\Sigma_ k\) by glueing \(S^{m-1}\times [\alpha,2\alpha]\) into \(M^*_{\alpha}=M^*-S^{m- 1}\times (\alpha,2\alpha)\) with appropriate identifications along \(\partial M^*_{\alpha}\). On \(S^{m-1}\times (0,2\alpha)\) and \(S^{m-1}\times (2\alpha,3\alpha)\) one introduces appropriate metrics with \(K\equiv -1\) and interpolates between them on [\(\alpha\),2\(\alpha\)]. If \(\alpha\) is sufficiently large, then the interpolation can take place sufficiently slowly to produce sectional curvatures in \([-1-\delta,- 1+\delta]\).
Reviewer: P.Eberlein

MSC:

53C20 Global Riemannian geometry, including pinching
57R55 Differentiable structures in differential topology

Citations:

Zbl 0646.53037
Full Text: DOI

References:

[1] R. L. Bishop and B. O’Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1 – 49. · Zbl 0191.52002
[2] J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. J. P. May, The geometry of iterated loop spaces, Springer-Verlag, Berlin-New York, 1972. Lectures Notes in Mathematics, Vol. 271. · Zbl 0285.55012
[3] G. Brumfiel, Homotopy equivalences of almost smooth manifolds, Comment. Math. Helv. 46 (1971), 381 – 407. · Zbl 0222.57021 · doi:10.1007/BF02566851
[4] F. T. Farrell and W. C. Hsiang, On Novikov’s conjecture for nonpositively curved manifolds. I, Ann. of Math. (2) 113 (1981), no. 1, 199 – 209. · Zbl 0461.57016 · doi:10.2307/1971138
[6] F. T. Farrell and L. E. Jones, A topological analogue of Mostow’s rigidity theorem, J. Amer. Math. Soc. 2 (1989), no. 2, 257 – 370. , https://doi.org/10.1090/S0894-0347-1989-0973309-4 F. T. Farrell and L. E. Jones, Compact negatively curved manifolds (of dim \ne 3,4) are topologically rigid, Proc. Nat. Acad. Sci. U.S.A. 86 (1989), no. 10, 3461 – 3463. , https://doi.org/10.1073/pnas.86.10.3461 F. T. Farrell and L. E. Jones, Rigidity and other topological aspects of compact nonpositively curved manifolds, Bull. Amer. Math. Soc. (N.S.) 22 (1990), no. 1, 59 – 64. · Zbl 0676.53047
[7] F. T. Farrell and L. E. Jones, A topological analogue of Mostow’s rigidity theorem, J. Amer. Math. Soc. 2 (1989), no. 2, 257 – 370. , https://doi.org/10.1090/S0894-0347-1989-0973309-4 F. T. Farrell and L. E. Jones, Compact negatively curved manifolds (of dim \ne 3,4) are topologically rigid, Proc. Nat. Acad. Sci. U.S.A. 86 (1989), no. 10, 3461 – 3463. , https://doi.org/10.1073/pnas.86.10.3461 F. T. Farrell and L. E. Jones, Rigidity and other topological aspects of compact nonpositively curved manifolds, Bull. Amer. Math. Soc. (N.S.) 22 (1990), no. 1, 59 – 64. · Zbl 0676.53047
[8] F. T. Farrell and L. E. Jones, Examples of expanding endomorphisms on exotic tori, Invent. Math. 45 (1978), no. 2, 175 – 179. · Zbl 0396.58020 · doi:10.1007/BF01390271
[9] M. Gromov, Manifolds of negative curvature, J. Differential Geom. 13 (1978), no. 2, 223 – 230. · Zbl 0433.53028
[10] M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75 – 263. · Zbl 0634.20015 · doi:10.1007/978-1-4613-9586-7_3
[11] M. Gromov and W. Thurston, Pinching constants for hyperbolic manifolds, Invent. Math. 89 (1987), no. 1, 1 – 12. · Zbl 0646.53037 · doi:10.1007/BF01404671
[12] Ursula Hamenstädt, A geometric characterization of negatively curved locally symmetric spaces, J. Differential Geom. 34 (1991), no. 1, 193 – 221. · Zbl 0733.53018
[13] Noel J. Hicks, Notes on differential geometry, Van Nostrand Mathematical Studies, No. 3, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965.
[14] Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504 – 537. · Zbl 0115.40505 · doi:10.2307/1970128
[15] Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah; Annals of Mathematics Studies, No. 88. · Zbl 0361.57004
[16] W. Magnus, Residually finite groups, Bull. Amer. Math. Soc. 75 (1969), 305 – 316. · Zbl 0196.04704
[17] G. D. Mostow, Quasi-conformal mappings in \?-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53 – 104. · Zbl 0189.09402
[18] G. D. Mostow and Yum Tong Siu, A compact Kähler surface of negative curvature not covered by the ball, Ann. of Math. (2) 112 (1980), no. 2, 321 – 360. · Zbl 0453.53047 · doi:10.2307/1971149
[19] Ernst A. Ruh, Almost symmetric spaces, Global Riemannian geometry (Durham, 1983) Ellis Horwood Ser. Math. Appl., Horwood, Chichester, 1984, pp. 93 – 98. · Zbl 0615.53043
[20] Yum Tong Siu, The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, Ann. of Math. (2) 112 (1980), no. 1, 73 – 111. · Zbl 0517.53058 · doi:10.2307/1971321
[21] Dennis Sullivan, Hyperbolic geometry and homeomorphisms, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), Academic Press, New York-London, 1979, pp. 543 – 555.
[22] Shing Tung Yau , Seminar on Differential Geometry, Annals of Mathematics Studies, vol. 102, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. Papers presented at seminars held during the academic year 1979 – 1980. · Zbl 0471.00020
[23] S. I. Al\(^{\prime}\)ber, Spaces of mappings into a manifold of negative curvature, Dokl. Akad. Nauk SSSR 178 (1968), 13 – 16 (Russian).
[24] James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109 – 160. · Zbl 0122.40102 · doi:10.2307/2373037
[25] Philip Hartman, On homotopic harmonic maps, Canad. J. Math. 19 (1967), 673 – 687. · Zbl 0148.42404 · doi:10.4153/CJM-1967-062-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.