×

Memory capacity in large idiotypic networks. (English) Zbl 0811.92010

Summary: Many models of immune networks have been proposed since the original work of N. K. Jerne [Ann. Immun. (Inst. Pasteur) 125C, 373-389 (1974)]. Recently, a limited class of models [see G. Weisbuch et al., J. Theor. Biol. 146, 483-499 (1990)] has been shown to maintain immunological memory by idiotypic network interactions. We examine generalizations of these models when the networks are both large and highly connected to study their memory capacity, i.e. their ability to account for immunization to a large number of random antigens. Our calculations show that in these minimal models, random connectivities with continuously distributed affinities reduce the memory capacity to essentially nil.

MSC:

92C30 Physiology (general)
92C50 Medical applications (general)
Full Text: DOI

References:

[1] Berek, C. and C. Milstein. 1987. Mutation drift and repertoire shift in the maturation of the immune response.Immun. Rev. 96, 23–41. · doi:10.1111/j.1600-065X.1987.tb00507.x
[2] Burnet, F. M. 1959.The Clonal Selection Theory of Acquired Immunity. New York: Cambridge University Press.
[3] De Boer, R. J. and P. Hogeweg. 1989a. Memory but no suppression in low-dimensional symmetric idiotypic networks.Bull. math. Biol. 51, 223–246. · Zbl 0662.92006
[4] De Boer, R. J. and P. Hogeweg. 1989b. Unreasonable implications of reasonable idiotypic network assumptions.Bull. math. Biol. 51, 381–408. · Zbl 0668.92004
[5] De Boer, R. J. and A. S. Perelson 1991. Size and connectivity as emergent properties of a developping immune network.J. theor. Biol. 149, 318–424.
[6] De Boer, R. J., A. S. Perelson and I. G. Kevrekidis. 1993a. Immune network behavior–I. From stationary states to limit cycle oscillations.Bull. math. Biol. 55, 745–780. · Zbl 0797.92014
[7] De Boer, R. J., A. S. Perelson and I. G. Kevrekidis. 1993b. Immune network behavior–II. From oscillations to chaos and stationary states.Bull. math. Biol. 55, 781–816. · Zbl 0797.92015
[8] Faro, J. and S. Velasco. 1993. Crosslinking of membrane-immunoglobulins and B cell activation: a simple model based on percolation theory.Proc. R. Soc. London B 254, 139–145. · doi:10.1098/rspb.1993.0138
[9] Freitas, A., B. Rocha and A. Coutinho. 1986.Immun. Rev. 91, 5–37. · doi:10.1111/j.1600-065X.1986.tb01482.x
[10] Hoffmann, G. 1975. A theory of regulation and self non-self discrimination in an immune network.Eur. J. Immun. 5, 638–647. · doi:10.1002/eji.1830050912
[11] Jerne, N. K. 1974. Towards a network theory of the immune system.Ann. Immun. (Inst. Pasteur) 125C, 373–389.
[12] Metha, M. L. 1967.Random Matrices and the Statistical Theory of Energy Levels. New York: Academic Press.
[13] Neumann, A. U. 1992. PhD thesis. Israel: Bar-Ilam University, Ramat-Gam.
[14] Neumann, A. U. and G. Weisbuch. 1992. Dynamics and topology of immune networks.Bull. math. Biol. 54, 699–726. · Zbl 0751.92001
[15] Parisi, G. 1990. A simple model for the immune network.Proc. natn. Acad. Sci. U.S.A. 87, 429–433. · doi:10.1073/pnas.87.1.429
[16] Perelson, A. S. 1989a. Immune network theory.Immun. Rev.,110, 5–36. · doi:10.1111/j.1600-065X.1989.tb00025.x
[17] Perelson, A. S. (Ed.) 1989 b.Theoretical Immunology. Santa Fe Institute Studies in the Sciences of Complexity: Addison-Wesley.
[18] Perelson, A. S. and C. DeLisi. 1980. Receptor clustering on a cell surface, Theory of receptor cross-linking by ligands bearing two chemically identical functional groups.Math. Biosci. 48, 71–110. · Zbl 0465.92006 · doi:10.1016/0025-5564(80)90017-6
[19] Segel, L. A. and A. S. Perelson. 1991. Exploiting the diversity of time scales in the immune system: a B-cell antibody model.J. statics. Phys. 63, 1113–1131. · doi:10.1007/BF01030002
[20] Richter, P. 1975. A network theory of the immune system.Eur. J. Immun. 5, 350–354. · doi:10.1002/eji.1830050511
[21] Stewart, J. and F. J. Varela. 1990. Dynamics of a class of immune networks II. Oscillatory activity of cellular and humoral components.J. theor. Biol. 144, 103–115. · doi:10.1016/S0022-5193(05)80302-9
[22] Vakil, M. and J. Kearney. 1986. Functional characterization of monoclonal auto-anti-idiotype antibodies isolated from the early B cell repertoire of BALB/c mice.Eur. J. Immun. 16, 1151–1158. · doi:10.1002/eji.1830160920
[23] Varela, F. and J. Stewart 1990. Dynamics of a class of immune networks I. Global stability of idiotype interactions.J. theor. Biol. 144, 93–101. · doi:10.1016/S0022-5193(05)80301-7
[24] Weisbuch, G., R. J. De Boer and A. S. Perelson. 1990. Localized memories in idiotypic networks.J. theor. Biol. 146, 483–499. · doi:10.1016/S0022-5193(05)80374-1
[25] Weisbuch, G. 1990. A shape space approach to the dynamics of the immune system.J. theor. Biol. 143, 507–522. · doi:10.1016/S0022-5193(05)80027-X
[26] Weisbuch, G. and A. U. Neumann. 1991. Generic modeling of the immune network. InTheoretical and Experimental Insights into Immunology, A. S. Perelson and G. Weisbuch (Eds), p. 205. NATO ASI Series.
[27] Weisbuch, G. and M. Oprea, 1994. Capacity of a model immune network.Bull. math. Biol. 56, 899–921. · Zbl 0805.92007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.