×

Immune network behavior. I: From stationary states to limit cycle oscillations. (English) Zbl 0797.92014

A model for the idiotypic interaction between two \(B\) cell clones which is an improved and more realistic version of earlier models is derived and analyzed. This model can be regarded as a system of eight differential equations with eight nondimensional parameters. To study the model, the authors first study two simpler models obtained by letting certain parameters approach zero or infinity. Also the symmetry features of the model are exploited. The properties of the steady states (equilibrium points) and the dynamic behavior of the simplified models are described.

MSC:

92C30 Physiology (general)
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34C30 Manifolds of solutions of ODE (MSC2000)
Full Text: DOI

References:

[1] Abramowitz, M. and I. A. Stegun. 1965.Handbook of Mathematical Functions, p. 17. NY: Dover. · Zbl 0171.38503
[2] Celada, F. 1971. The cellular basis of immunological memory.Prog. Allergy 15, 223–267. · doi:10.1159/000313054
[3] Coutinho, A. 1989. Beyond clonal selection and network.Immunol. Rev. 110, 63–87. · doi:10.1111/j.1600-065X.1989.tb00027.x
[4] Davies, K. A., V. Hird, S. Stewart, G. B. Sivolapenko, P. Jose, A. A. Epenetos and M. Walport. 1990. A study ofin vivo complex formation and clearance in man.J. Immunol. 144, 4613–4620.
[5] De Boer, R. J. 1988. Symmetric idiotypic networks: connectance and switching, stability, and suppression. In:Theoretical Immunology. A. S. Perelson (Ed.), Part 2, pp. 265–289, SFI Studies in the Science of Complexity, Vol. III. Redwood City, CA: Addison-Wesley.
[6] DeBoer, R. J. and P. Hogeweg. 1989a. Memory but no suppression in low-dimensional symmetric idiotypic networks.Bull. math. Biol. 51, 223–246. · Zbl 0662.92006 · doi:10.1016/S0092-8240(89)80070-9
[7] De Boer, R. J. and P. Hogeweg. 1989b. Unreasonable implications of reasonable idiotypic network assumptions.Bull. math. Biol. 51, 381–408. · Zbl 0668.92004
[8] De Boer, R. J., I. G. Kevrekidis and A. S. Perelson. 1990. A simple idiotypic network model with complex dynamics.Chem. Engng Sci. 45, 2375–2382. · doi:10.1016/0009-2509(90)80118-X
[9] De Boer, R. J., I. G. Kevrekidis and A. S. Perelson. 1993. Immune network behavior–II. From oscillations to chaos and stationary states.Bull. math. Biol. 55, 781–816. · Zbl 0797.92015
[10] De Boer, R. J., A. U. Neumann, A. S. Perelson, L. A. Segel and G. Weisbuch. 1992a. Recent approaches to immune networks. In:Proc. First European Biomathematics Conference. V. Capasso and P. Demongeot (Ed.). Berlin: Springer-Verlag, in press.
[11] De Boer, R. J., J. D. van der Laan and P. Hogeweg. 1992b. Randomness and pattern scale in the immune network: a cellular automaton approach. In:Thinking about Biology. W. D. Stein and F. J. Varela (Ed.), Part 2, SFI Studies in the Science of Complexity, Vol. III. Redwood City, CA: Addison-Wesley, in press.
[12] De Boer, R. J., L. A. Segel and A. S. Perelson. 1992c. Pattern formation in one and two-dimensional shape space models of the immune system.J. theor. Biol. 155, 295–233. · doi:10.1016/S0022-5193(05)80601-0
[13] De Boer, R. J. and A. S. Perelson. 1991. Size and connectivity as emergent properties of a developing immune network.J. theor. Biol. 149, 381–424. · doi:10.1016/S0022-5193(05)80313-3
[14] Dibrov, B. F., M. A. Livshits, and M. V. Volkenstein. 1977. Mathematical model of immune responses.J. theor. Biol. 65, 609–631. · doi:10.1016/0022-5193(77)90012-1
[15] Farmer, J. D., N. H. Packard and A. S. Perelson. 1986. The immune system, adaptation, and machine learning.Physica 22D, 187–204.
[16] Fowler, A. C. 1981. Approximate solution of a model of biological immune responses incorporating delay.J. math. Biol. 13, 23–45. · Zbl 0477.92009 · doi:10.1007/BF00276864
[17] Hoffmann, G. W. 1975. A theory of regulation and self-nonself discrimination in an immune network.Eur. J. Immunol. 5, 638–647. · doi:10.1002/eji.1830050912
[18] Holmberg, D., A. Andersson, L. Carlson and S. Forsgen. 1989. Establishment and functional implications of B-cell connectivity.Immunol. Rev. 110, 89–103. · doi:10.1111/j.1600-065X.1989.tb00028.x
[19] Hooijkaas, H., R. Benner, J. R. Pleasants and B. S. Wostmann. 1984. Isotypes and specificities of immunoglobulins produced by germ-free mice fed chemically defined ultrafiltered ”antigen-free” diet.Eur. J. Immunol. 14, 1127–1130. · doi:10.1002/eji.1830141212
[20] Jerne, N. K. 1974. Towards a network theory of the immune system.Ann. Immunol. (Inst. Pasteur) 125 C, 373–389.
[21] Landis, E. M. and J. R. Pappenheimer. 1962. Exchange of substances through the capillary walls. In:Handbook of Physiology, Circulation II. Washington, DC: American Physiology Society.
[22] Lundkvist, I., A. Coutinho, F. Varela and D. Holmberg. 1989. Evidence for a functional idiotypic network amongst natural antibodies in normal mice.Proc. Natn. Acad. Sci. USA 86, 5074–5078. · doi:10.1073/pnas.86.13.5074
[23] Pabst, R. 1988. The role of the spleen in lymphocyte migration. In:Migration and Homing of Lymphoid Cells. A. J. Husband (Ed.), Vol. I, pp. 63–84. Boca Raton, FL: CRC Press.
[24] Pereira, P., L. Forni, E. L. Larsson, M. Cooper, C. Heusser and A. Coutinho. 1986. Autonomous activation of B and T cells in antigen-free mice.Eur. J. Immunol. 16, 685–688. · doi:10.1002/eji.1830160616
[25] Perelson, A. S. 1981. Receptor clustering on a cell surface. III. Theory of receptor cross-linking by multivalent ligands: Description by ligand states.Math. Biosci. 53, 1–39. · Zbl 0478.92007 · doi:10.1016/0025-5564(81)90036-5
[26] Perelson, A. S. 1984. Some mathematical models of receptor clustering by multivalent antigens. In:Cell Surface Dynamics: Concepts and Models. A. S. Perelson, C. DeLisi and F. W. Wiegel (Eds), pp. 223–276. Marcel Dekker: New York.
[27] Perelson, A. S. 1988.Theoretical Immunology, A. S. Perelson (Ed.), Part 2, SFI Studies in the Science of Complexity, Vol. III. Redwood City, CA: Addison-Wesley.
[28] Perelson, A. S. 1989. Immune network theory.Immunol. Rev. 110, 5–36. · doi:10.1111/j.1600-065X.1989.tb00025.x
[29] Perelson, A. S. and C. DeLisi. 1980. Receptor clustering on a cell surface. I. Theory of receptor cross-linking by ligands bearing two chemically identical functional groups.Math. Biosci. 48, 71–110. · Zbl 0465.92006 · doi:10.1016/0025-5564(80)90017-6
[30] Perelson, A. S. and G. Weisbuch. 1992. Modeling immune reactivity in secondary lymphoid organs.Bull. math. Biol. 54, 649–672. · Zbl 0745.92013
[31] Richter, P. H. 1975. A network theory of the immune system.Eur. J. Immunol. 5, 350–354. · doi:10.1002/eji.1830050511
[32] Richter, P. H. 1978. The network idea and the immune response. In:Theoretical Immunology. G. I. Bell, A. S. Perelson and G. H. Pimbley Jr (Eds). New York: Marcel Dekker.
[33] Segel, L. A. and A. S. Perelson. 1988. Computations in shape space. A new approach to immune network theory. In:Theoretical Immunology. A. S. Perelson (Ed.), Part 1, pp. 349–382, SFI Studies in the Sciences of Complexity. Redwood City, CA: Addison-Wesley.
[34] Segel, L. A. and A. S. Perelson. 1989. Shape space analysis of immune networks. in:Cell to Cell Signalling: From Experiments to Theoretical Models. A. Goldbeter (Ed.), pp. 273–283. New York: Academic Press.
[35] Segel, L. A. and A. S. Perelson. 1991. Exploiting the diversity of time scales in the immune system: A B-cell antibody model.J. statisc. Phys. 63, 1113–1131. · doi:10.1007/BF01030002
[36] Sprent, J. 1989. T lymphocytes and the thymus. In:Fundamental Immunology. W. E. Paul (Ed.), pp. 69–93. New York: Raven Press.
[37] Stewart, J. and F. J. Varela. 1989. Exploring the meaning of connectivity in the immune network.Immunol. Rev. 110, 37–61. · doi:10.1111/j.1600-065X.1989.tb00026.x
[38] Stewart, J. and F. J. Varela. 1990. Dynamics of a class of immune networks. II. Oscillatory activity of cellular and humoral components.J. theor. Biol. 144, 103–115. · doi:10.1016/S0022-5193(05)80302-9
[39] Strand, F. L. 1978.Physiology, p. 559. New York: Macmillan.
[40] Varela, F. J. and A. Coutinho. 1991. Second generation immune networks.Immunol. Today 12, 159–166.
[41] Varela, F. J., A. Anderson, G. Dietrich, A. Sundblad, D. Holmberg, M. Kazatchkine and A. Coutinho. 1991. The population dynamics of natural antibodies in normal and autoimmune individuals.Proc. Natn. Acad. Sci. USA 88, 5917–5921. · doi:10.1073/pnas.88.13.5917
[42] Vaz, N. N. and F. J. Varela. 1978. Self and non-sense: an organism-centered approach to immunology.Med Hypoth. 4, 231–267. · doi:10.1016/0306-9877(78)90005-1
[43] Weisbuch, G., R. J. De Boer and A. S. Perelson. 1990. Localized memories in idiotypic networks.J. theor. Biol. 146, 483–499. · doi:10.1016/S0022-5193(05)80374-1
[44] Weiss, L. (1972).The Cells and Tissues of the Immune System. Englewood Cliffs, NJ: Prentice-Hall.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.