×

Receptor clustering on a cell surface. I. Theory of receptor cross- linking by ligands bearing two chemically identical functional groups. (English) Zbl 0465.92006


MSC:

92Cxx Physiological, cellular and medical topics
92B05 General biology and biomathematics
80A30 Chemical kinetics in thermodynamics and heat transfer
34D10 Perturbations of ordinary differential equations
65R20 Numerical methods for integral equations
65Q05 Numerical methods for functional equations (MSC2000)
60G50 Sums of independent random variables; random walks
Full Text: DOI

References:

[1] (Cuatrecasas, P.; Greaves, M. F., Receptors and Recognition (1978), Chapman and Hall: Chapman and Hall London). (Delisi, C.; Blumenthal, R., Physical Chemical Aspects of Cell Surface Events in Cellular Regulation (1979)), For example, see
[2] Krakauer, H.; Peacock, J. S.; Archer, B. G.; Krakauer, T., The interaction of surface immunoglobulins of lymphocytes with highly defined synthetic antigens, (Delisi, C.; Blumenthal, R., Physical Chemical Aspects of Cell Surface Events in Cellular Regulation (1979), Elsevier North-Holland: Elsevier North-Holland New York)
[3] Hornick, C.; Karush, F., Antibody affinity III. The role of multivalence, Immunochemistry, 9, 325-340 (1972)
[4] Ishizaka, T.; Ishizaka, K., Triggering of histamine release from rat mast cells by divalent antibodies directed against IgE-receptor, J. Immunol., 120, 800-805 (1978)
[5] Henry, N.; Parce, J. W.; McConnell, H. M., Visualization of specific antibody and Clq binding to hapten-sensitized lipid vesicles, Proc. Nat. Acad. Sci. U.S.A., 75, 3933-3937 (1978)
[6] Kahn, C. R.; Baird, K. L.; Jarrett, D. B.; Flier, J. S.; DeLisi, C., Direct demonstration that receptor crosslinking or aggregation is important in insulin action, Proc. Nat. Acad. Sci. U.S.A.. (DeLisi; Blumenthal, Physical Chemical Aspects of Cell Surface Events in Cellular Regulation (1979), Elsevier North-Holland: Elsevier North-Holland New York), 75, 261-4213 (1978)
[7] Dembo, M.; Goldstein, B.; Sobotka, A. K.; Lichtenstein, L. M., Histamine release due to bivalent penicilloyl haptens: the relation of activation and desensitization of basophils to dynamic aspects of ligand bindin g to cell surface antibody, J. Immunol., 122, 518-528 (1978)
[8] Mendoza, G.; Metzger, H., Distribution and valency of receptor for IgE on rodent mast cells and related tumor cells, Nature, 264, 548-550 (1976)
[9] Arrhenius, S., Immunochemistry (1907), MacMillan: MacMillan New York
[10] Marrack, J. R., The Chemistry of Antigens and Antibodies (1934), His Majesty’s Stationery Office: His Majesty’s Stationery Office London
[11] Heidelberger, M.; Kendall, F. E., the precipitin reaction between type III pneumococcus polysaccharide and homologous antibody III. A quantitative study and a theory of the reaction me chanism, J. Exp. Med., 61, 563-591 (1935)
[12] Heidelberger, M., Chemical aspects of the precipitin and agglutin reactions, Chem. Rev., 24, 323-343 (1939)
[13] Flory, P. J., Molecular size distribution in linear condensation polymers, J. Amer. Chem. Soc., 58, 1877-1885 (1936)
[14] Flory, P. J., Fundamental principles of condensation polymerization, Chem. Rev., 39, 137-197 (1946)
[15] Stockmayer, W. H., Theory of molecular size distributions and gel formation in branched-chain polymers, J. Chem. Phys., 11, 45-55 (1943)
[16] Stockmayer, W. H., Theory of molecular size distribution and gel formation in branched polymers. II. General crosslinking, J. Chem. Phys., 12, 125-131 (1944)
[17] Kuhn, W., Über die Kinetik des Abbaues hochmolekularer Ketten, Ber. Dtsch. Chem. Ges., 63, 1503-1509 (1930)
[18] Schultz, G. V., Über die Beziehung zwischen Reaktionsgeschwindigkeit und Zusammensetzung des Reaktionsproduktes bei Makropolymerisationsvorgangen, Physik Chem., B30, 379-398 (1935)
[19] Goldberg, R. J., A theory of antibody-antigen reactions. I. Theory for reactions of multivalent antigen with bivalent and univalent antibody, J. Amer. Chem. Soc., 74, 5715-5725 (1952)
[20] DeLisi, C.; Perelson, A., The kinetics of aggregation phenomena. I. Minimal models for patch formation on lymphocyte membranes, J. Theoret. Biol., 62, 159-210 (1976)
[21] Smoluchowski, M. V., Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Physik. Z., 17, 585-599 (1916)
[22] Smoluchowski, M. V., Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Z. Phys. Chem., 92, 129-168 (1917)
[24] Watson, G. S., On Goldberg’s theory of the precipitin reaction, J. Immunol., 80, 182-185 (1958)
[25] Gordon, M., Good’s theory of cascade processes applied to the statistics of polymer distributions, Proc. Roy. Soc. Ser., A 268, 240-259 (1962)
[26] Good, I. J., Cascade theory and the molecular weight averages of the sol fraction, Proc. Roy. Soc. Ser., A 272, 54-59 (1963)
[27] Whittle, P., Statistical processes of aggregation and polymerization, Proc. Cambridge Philos. Soc., 61, 475-495 (1965)
[28] Nanda, V. S.; Jain, S. C., Effect of variation of the bimolecular rate constant with chain length on the statistical character of condensation polymers, J. Chem. Phys., 49, 1318-1320 (1968)
[29] Nanda, V. S.; Jain, S. C., Statistical study of the effect of variation of bimolecular rate constant in condensation polymerization, J. Polymer Sci. (Part A-1), 8, 1871-1885 (1970)
[30] Donoghue, E.; Gibbs, J. H., Mean chain length distributions in finite polycondensing systems, J. Polymer Sci.: Polymer Symp., 63, 131-145 (1978)
[31] Donoghue, E.; Gibbs, J. H., Mean molecular size distributions and the sol-gel transition in finite, polycondensing systems, J. Chem. Phys., 70, 2346-2356 (1979)
[32] Bell, G. I., Model for the binding of multivalent antigen to cells, Nature, 248, 430-431 (1974)
[33] Bell, G. I., B lymphocyte activation and lattice formation, Transplant Rev., 23, 23-36 (1975)
[34] DeLisi, C., Some physical chemical aspects of cellular selection in an immune response, (Bell, G.; Perelson, A.; Pimbley, G., Theoretical Immunology (1978), Marcel Dekker: Marcel Dekker New York)
[35] DeLisi, C.; Thakur, A. K., Antigen binding to receptors on immunocompetent cells. II. Thermodynamic and biological implications of the receptor crosslinking requirement for B cell activation, Cell. Immunol., 28, 416-426 (1977)
[36] Perelson, A. S., Models of the events responsible for antibody production by B lymphocytes, (Bell, G.; Perelson, A.; Pimbley, G., Theoretical Immunology (1978), Marcel Dekker: Marcel Dekker New York)
[37] Perelson, A., A model for the reversible binding of bivalent antigen to cells, (DeLisi, C.; Blumenthal, R., Physical Chemical Aspects of Cell Surface Events in Cellular Regulation (1979), Elsevier North-Holland: Elsevier North-Holland New York)
[38] Dembo, M.; Goldstein, B., Theory of equilibrium binding of symmetric bivalent haptens to cell surface antibody: application to histamine release from basophils, J. Immunol., 121, 345-353 (1978)
[39] Wofsy, C.; Goldstein, B.; Dembo, M., Theory of equilibrium binding of asymmetric bivalent haptens to cell surface antibody: application to histamine release from basophils, J. Immunol., 121, 593-601 (1978)
[40] DeLisi, C.; Siraganian, R., Receptor crosslinking and histamine release. I. The quantitative dependence of basophil degranulation on the number of receptor doublets, J. Immunol., 122, 2286-2292 (1979)
[41] Wilder, R. L.; Green, G.; Schumaker, V. N., Bivalent haptens as probes of combining site depth, Immunochemistry, 12, 49-54 (1975)
[42] Levine, B. B., The nature of the antigen-antibody complexes which initiate anaphylactic reactions. I. A quantitative comparison of the abilities of nontoxic univalent, toxic univalent, divalent and multivalent benzylpenicilloyl haptens to evoke passive cutaneous anaphylaxis in the guinea pig, J. Immunol., 94, 111-120 (1965)
[43] Dembo, M.; Goldstein, B.; Sobotka, A. K.; Lichtenstein, L. M., Histamine release due to bivalent penicilloyl haptens: control by the number of cross-linked IgE antibodies on the basophil plasma membrane, J. Immunol., 121, 354-358 (1978)
[44] Lin, C. C.; Segel, L. A., Mathematics Applied to Deterministic Problems in the Natural Sciences (1974), MacMillan: MacMillan New York · Zbl 0286.00003
[45] Gear, C. W., The automatic integration of ordinary differential equations, Comm. ACM, 14, 176-179 (1971) · Zbl 0217.21701
[46] Perelson, A.; DeLisi, C., A systematic and graphical method for generating the kinetic equations governing the growth of aggregates, J. Chem. Phys., 62, 4053-4061 (1975)
[47] Archer, G.; Krakauer, H., Thermodynamics of antibody-antigen reactions. 2. The binding of bivalent synthetic random coil antigens to antibodies having different antigen precipitating properties, Biochemistry, 16, 618-627 (1977)
[48] Jacobson, H.; Stockmayer, W. H., Intramolecular reaction in polycondensation. I. The theory of linear systems, J. Chem. Phys., 18, 1600-1606 (1950)
[49] DeLisi, C.; Crothers, D. M., Theory of the influence of oligonucleotide chain conformation on double helix stability, Biopolymers, 10, 1809-1827 (1971)
[50] DeLisi, C., The nucleic acid distance distribution function. Evaluation of the loop closure probability, Biopolymers, 11, 2251-2265 (1972)
[51] Epstein, S. I.; Doty, P.; Boyd, W. C., A thermodynamic study of hapten-antibody associations, J. Amer. Chem. Soc., 78, 3306-3315 (1956)
[52] Wilder, R. L.; Green, G.; Schumaker, V. N., Bivalent hapten-antibody interactions. I. A comparison of water soluble and water insoluble bivalent haptens, Immunochemistry, 12, 39-47 (1975)
[53] Barisas, B. G.; Singer, S. J.; Sturtevant, J. M., Kinetic evidence for a conformational change by an antihapten antibody upon binding multivalent hapten, Immunochemistry, 14, 247-252 (1977)
[54] Sobotka, A. K.; Dembo, M.; Goldstein, B.; Lichtenstein, L. M., Antigen-specific desensitization of human basophils, J. Immunol., 122, 511-517 (1979)
[55] Dembo, M.; Goldstein, B., The mechanism of histamine release from human basophils, (DeLisi, C.; Blumenthal, R., Physical Chemical Aspects of Cell Surface Events in Cellular Regulation (1979), Elsevier North-Holland: Elsevier North-Holland New York)
[56] DeLisi, C.; Siraganian, R., Receptor cross-linking and histamine release. II. Interpretation and analysis of anomalous dose response patterns, J. Immunol., 122, 2293-2299 (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.