×

Cyclic homology, \(S^1\)-equivariant Floer cohomology and Calabi-Yau structures. (English) Zbl 07777465

This paper concerns the compatibility between chain level \(S^{1}\)-actions arising in two different types of Floer theory on a symplectic manifold \(M\).
(1)
The first of these \(C_{-\ast} (S^{1})\)-actions is induced geometrically on the Hamiltonian Floer homology chain complex \(CF^{\ast} (M)\), formally a type of Morse complex for an action functorial on the free loop space, through rotating free loops. The homological action of \(\left[ S^{1}\right]\) is known as the BV operator \(\left[ \Delta\right]\), and the \(C_{-\ast} (S^{1})\)-action is to be used to define \(S^{1}\)-equivariant Floer homology theories [F. Bourgeois and A. Oancea, Int. Math. Res. Not. 2017, No. 13, 3849–3937 (2017; Zbl 1405.53123); P. Seidel, in: Current developments in mathematics, 2006. Somerville, MA: International Press. 211–253 (2008; Zbl 1165.57020)].
(2)
The second \(C_{-\ast} (S^{1})\)-action lies on the Fukaya category of \(M\), and has discrete or combinatorial origins, coming from the hierarchy of compatible \(\mathbb{Z}/k\mathbb{Z}\)-actions on cyclically composable chains of morphisms between Lagrangians. A. Connes [Publ. Math., Inst. Hautes Étud. Sci. 62, 41–144 (1985; Zbl 0592.46056)], B. L. Tsygan [Russ. Math. Surv. 38, No. 2, 198–199 (1983; Zbl 0526.17006)] and J.-L. Loday and D. Quillen [Comment. Math. Helv. 59, 565–591 (1984; Zbl 0565.17006)] observed that such a structure, which exists on any category \(\mathcal{C}\), can be packaged into a \(C_{-\ast} (S^{1})\)-action on the Hochschild homology chain complex \(\mathrm{CH}_{\ast}(\mathcal{C})\) of the category.

A relationship between the Hochschild homology of the Fukaya category \(\mathcal{F}\) and the Floer homology of \(M\) is provided by the so-called open-closed string map [M. Abouzaid, Publ. Math., Inst. Hautes Étud. Sci. 112, 191–240 (2010; Zbl 1215.53078)] \[ \mathcal{OC}:\mathrm{CH}_{\ast} (\mathcal{F})\rightarrow CF^{\ast+n} (M). \] The main result of this paper concerns the comparibility of \(\mathcal{OC}\) with \(C_{-\ast} (S^{1})\)-actions.
The synopsis of the paper is as follows.
§ 2
recalls a convenient model for the category of \(A_{\infty}\)-modules over \(C_{-\ast} (S^{1})\) and various equivariant homology functors from this category.
§ 3
reviews the (compact and wrapped) Fukaya category along with \(C_{-\ast} (S^{1})\)-action on its nonunital Hochschild chain complex.
§ 4
recalls the construction of the \(A_{\infty}C_{-\ast}(S^{1})\)-module structure on the (Hamiltonian) Floer chain complex after {F. Bourgeois} and {A. Oancea} [loc. cit.] and {P. Seidel} [loc. cit.].
§ 5
establishes the main result concerning the comparibility of \(\mathcal{OC}\) with \(C_{-\ast} (S^{1})\)-actions.
§ 6
applies the main result to construct proper and smooth Calabi-Yau structures, establishing the following two theorems.
Theorem. The Fukaya category of compact Lagrangians has, under some technical hypotheses, a canonical geometrically defined proper Calabi-Yau structure over any ground field.
Theorem. Under some techinical hypotheses, suppose further that the symplectic manifold \(M\) is nondegenerate in the sense of [S. Ganatra, “Symplectic cohomology and duality for the wrapped Fukaya category”, Preprint, arXiv:1304.7312]. Then its (compact or wrapped) Fukaya category possesses a canonical, geometrically defined strong smooth Calabi-Yau structure.
The appendix
is concerned with moduli spaces and operations.

MSC:

53D37 Symplectic aspects of mirror symmetry, homological mirror symmetry, and Fukaya category
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14J33 Mirror symmetry (algebro-geometric aspects)
19D55 \(K\)-theory and homology; cyclic homology and cohomology
18G90 Other (co)homology theories (category-theoretic aspects)

References:

[1] 10.1007/s10240-010-0028-5 · Zbl 1215.53078 · doi:10.1007/s10240-010-0028-5
[2] 10.2140/gt.2010.14.627 · Zbl 1195.53106 · doi:10.2140/gt.2010.14.627
[3] 10.1112/plms/pdv065 · Zbl 1337.57059 · doi:10.1112/plms/pdv065
[4] 10.2140/gt.2012.16.301 · Zbl 1322.53080 · doi:10.2140/gt.2012.16.301
[5] 10.1093/imrn/rnw029 · Zbl 1405.53123 · doi:10.1093/imrn/rnw029
[6] 10.1112/s0010437x19007024 · Zbl 1436.18009 · doi:10.1112/s0010437x19007024
[7] 10.1090/conm/055.1/862632 · Zbl 0615.55009 · doi:10.1090/conm/055.1/862632
[8] 10.4310/HHA.2012.v14.n1.a10 · Zbl 1271.53080 · doi:10.4310/HHA.2012.v14.n1.a10
[9] 10.1007/BF02571891 · Zbl 0869.58011 · doi:10.1007/BF02571891
[10] 10.1007/PL00004267 · Zbl 0869.58013 · doi:10.1007/PL00004267
[11] ; Connes, Alain, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math., 62, 257 (1985) · Zbl 0592.46056
[12] 10.1016/j.aim.2006.06.004 · Zbl 1171.14038 · doi:10.1016/j.aim.2006.06.004
[13] 10.1112/jtopol/jtp030 · Zbl 1181.81100 · doi:10.1112/jtopol/jtp030
[14] 10.4171/JEMS/510 · Zbl 1317.58003 · doi:10.4171/JEMS/510
[15] 10.1016/B978-044481779-2/50017-1 · Zbl 0868.55016 · doi:10.1016/B978-044481779-2/50017-1
[16] ; Floer, Andreas, Witten’s complex and infinite-dimensional Morse theory, J. Differential Geom., 30, 1, 207 (1989) · Zbl 0678.58012
[17] 10.1007/BF02571699 · Zbl 0810.58013 · doi:10.1007/BF02571699
[18] 10.1215/0023608X-2010-004 · Zbl 1205.53090 · doi:10.1215/0023608X-2010-004
[19] 10.2748/tmj/1325886287 · Zbl 1244.57046 · doi:10.2748/tmj/1325886287
[20] 10.1090/amsip/046.2 · doi:10.1090/amsip/046.2
[21] 10.24033/ast.978 · doi:10.24033/ast.978
[22] 10.4310/PAMQ.2008.v4.n3.a8 · Zbl 1189.14013 · doi:10.4310/PAMQ.2008.v4.n3.a8
[23] 10.1007/978-3-319-59939-7_3 · Zbl 1390.14011 · doi:10.1007/978-3-319-59939-7\_3
[24] 10.1016/0021-8693(87)90086-X · Zbl 0617.16015 · doi:10.1016/0021-8693(87)90086-X
[25] 10.1016/S0022-4049(97)00152-7 · Zbl 0923.19004 · doi:10.1016/S0022-4049(97)00152-7
[26] 10.1090/conm/406/07654 · Zbl 1121.18008 · doi:10.1090/conm/406/07654
[27] 10.1007/BF02103769 · Zbl 0844.57039 · doi:10.1007/BF02103769
[28] 10.1090/conm/462/09058 · Zbl 1155.53060 · doi:10.1090/conm/462/09058
[29] 10.1007/978-3-540-68030-7_6 · Zbl 1202.81120 · doi:10.1007/978-3-540-68030-7_6
[30] 10.1007/978-3-662-21739-9 · doi:10.1007/978-3-662-21739-9
[31] 10.1007/BF02566367 · Zbl 0565.17006 · doi:10.1007/BF02566367
[32] 10.1016/0022-4049(94)90091-4 · Zbl 0807.19002 · doi:10.1016/0022-4049(94)90091-4
[33] 10.1017/CBO9780511626289 · doi:10.1017/CBO9780511626289
[34] 10.4171/CMH/155 · Zbl 1159.55004 · doi:10.4171/CMH/155
[35] ; Piunikhin, S.; Salamon, D.; Schwarz, M., Symplectic Floer-Donaldson theory and quantum cohomology, Contact and symplectic geometry. Publ. Newton Inst., 8, 171 (1996) · Zbl 0874.53031
[36] 10.1112/jtopol/jts038 · Zbl 1298.53093 · doi:10.1112/jtopol/jts038
[37] 10.24033/bsmf.2365 · Zbl 0992.53059 · doi:10.24033/bsmf.2365
[38] ; Seidel, Paul, Fukaya categories and deformations, Proceedings of the International Congress of Mathematicians, II, 351 (2002) · Zbl 1014.53052
[39] 10.4310/HHA.2008.v10.n2.a4 · Zbl 1215.53079 · doi:10.4310/HHA.2008.v10.n2.a4
[40] ; Seidel, Paul, A biased view of symplectic cohomology, Current developments in mathematics, 211 (2008) · Zbl 1165.57020
[41] 10.4171/063 · Zbl 1159.53001 · doi:10.4171/063
[42] 10.1007/s00220-009-0944-8 · Zbl 1197.14044 · doi:10.1007/s00220-009-0944-8
[43] 10.1007/s00222-013-0484-x · Zbl 1305.53081 · doi:10.1007/s00222-013-0484-x
[44] 10.4171/CMH/445 · Zbl 1407.53097 · doi:10.4171/CMH/445
[45] 10.1007/s00039-012-0159-6 · Zbl 1250.53078 · doi:10.1007/s00039-012-0159-6
[46] 10.1007/s00222-014-0507-2 · Zbl 1344.53073 · doi:10.1007/s00222-014-0507-2
[47] 10.1007/s10240-016-0082-8 · Zbl 1453.53079 · doi:10.1007/s10240-016-0082-8
[48] 10.1007/s40062-019-00251-2 · Zbl 1506.14025 · doi:10.1007/s40062-019-00251-2
[49] ; Tradler, Thomas, Infinity-inner-products on A-infinity-algebras, J. Homotopy Relat. Struct., 3, 1, 245 (2008) · Zbl 1243.16008
[50] ; Tsygan, B. L., Homology of matrix Lie algebras over rings and the Hochschild homology, Uspekhi Mat. Nauk, 38, 2(230), 217 (1983) · Zbl 0518.17002
[51] 10.1007/s000390050106 · Zbl 0954.57015 · doi:10.1007/s000390050106
[52] 10.4310/JSG.2019.v17.n5.a9 · Zbl 1462.53077 · doi:10.4310/JSG.2019.v17.n5.a9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.