×

On the Fukaya category of a Fano hypersurface in projective space. (English) Zbl 1453.53079

Summary: This paper is about the Fukaya category of a Fano hypersurface \(X \subset \mathbf {CP}^{n}\). Because these symplectic manifolds are monotone, both the analysis and the algebra involved in the definition of the Fukaya category simplify considerably. The first part of the paper is devoted to establishing the main structures of the Fukaya category in the monotone case: the closed-open string maps, weak proper Calabi-Yau structure, Abouzaid’s split-generation criterion, and their analogues when weak bounding cochains are included. We then turn to computations of the Fukaya category of the hypersurface \(X\): we construct a configuration of monotone Lagrangian spheres in \(X\), and compute the associated disc potential. The result coincides with the Hori-Vafa superpotential for the mirror of \(X\) (up to a constant shift in the Fano index 1 case). As a consequence, we give a proof of Kontsevich’s homological mirror symmetry conjecture for \(X\). We also explain how to extract non-trivial information about Gromov-Witten invariants of \(X\) from its Fukaya category.

MSC:

53D37 Symplectic aspects of mirror symmetry, homological mirror symmetry, and Fukaya category
14F08 Derived categories of sheaves, dg categories, and related constructions in algebraic geometry
14J33 Mirror symmetry (algebro-geometric aspects)
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)

References:

[1] M. Abouzaid, A geometric criterion for generating the Fukaya category, Publ. Math. Inst. Hautes Études Sci., 112 (2010), 191-240. doi:10.1007/s10240-010-0028-5. · Zbl 1215.53078 · doi:10.1007/s10240-010-0028-5
[2] M. Abouzaid, K. Fukaya, Y. G. Oh, H. Ohta and K. Ono, Quantum cohomology and split generation in Lagrangian Floer theory, in preparation. · Zbl 1382.53001
[3] P. Albers, A Lagrangian Piunikhin-Salamon-Schwarz morphism and two comparison homomorphisms in Floer homology, Int. Math. Res. Not., 2008 (2008), 56. doi:10.1093/imrn/rnm134. · Zbl 1158.53066 · doi:10.1093/imrn/rnm134
[4] D. Auroux, Mirror symmetry and T-duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol., 1 (2007), 51-91. · Zbl 1181.53076
[5] Auroux, D., A beginner’s introduction to Fukaya categories, No. 26, 85-136 (2014), Budapest · Zbl 1325.53001 · doi:10.1007/978-3-319-02036-5_3
[6] A. Beauville, Quantum cohomology of complete intersections, Mat. Fiz. Anal. Geom., 2 (1995), 384-398. · Zbl 0863.14029
[7] P. Biran and O. Cornea, Lagrangian topology and enumerative geometry, Geom. Topol., 16 (2012), 963-1052. doi:10.2140/gt.2012.16.963. · Zbl 1253.53079 · doi:10.2140/gt.2012.16.963
[8] P. Biran and O. Cornea, Lagrangian cobordism and Fukaya categories, Geom. Funct. Anal., 24 (2014), 1731-1830. doi:10.1007/s00039-014-0305-4. · Zbl 1306.55003 · doi:10.1007/s00039-014-0305-4
[9] P. Biran and C. Membrez, The Lagrangian Cubic Equation, 2014, arXiv:1406.6004. · Zbl 1404.53101
[10] R. Bott and L. Tu, Differential forms in algebraic topology, Springer, Berlin, 1982. · Zbl 0496.55001 · doi:10.1007/978-1-4757-3951-0
[11] R. Buchweitz, Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings, 1986. · Zbl 1243.16008
[12] C. H. Cho, Products of Floer cohomology of torus fibers in toric Fano manifolds, Commun. Math. Phys., 260 (2005), 613-640. doi:10.1007/s00220-005-1421-7. · Zbl 1109.53079 · doi:10.1007/s00220-005-1421-7
[13] C. H. Cho, Strong homotopy inner product of an A∞\(A_{\infty}\)-algebra, Int. Math. Res. Not., 2008 (2008), 35. doi:10.1093/imrn/rnn041. · Zbl 1180.55007 · doi:10.1093/imrn/rnn041
[14] C. H. Cho, H. Hong and S. C. Lau, Localized mirror functor for Lagrangian immersions, and homological mirror symmetry for Pa,b,c \(1\mathbf{P}^1_{a,b,c}, 2013\), arXiv:1308.4651. · Zbl 1369.53062
[15] C. H. Cho and Y. G. Oh, Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math., 10 (2006), 773-814. doi:10.4310/AJM.2006.v10.n4.a10. · Zbl 1130.53055 · doi:10.4310/AJM.2006.v10.n4.a10
[16] M. Cohen and S. Montgomery, Group-graded rings, smash products, and group actions, Trans. Am. Math. Soc., 282 (1984), 237-258. doi:10.2307/1999586. · Zbl 0533.16001 · doi:10.2307/1999586
[17] Crauder, B.; Miranda, R., Quantum cohomology of rational surfaces, Texel Island, 1994 · Zbl 1229.90116 · doi:10.1007/s10107-010-0402-6
[18] V. Dolgushev, A Proof of Tsygan’s Formality Conjecture for an Arbitrary Smooth Manifold, Ph.D. thesis, MIT, 2005. · Zbl 1382.53001
[19] T. Dyckerhoff, Compact generators in categories of matrix factorizations, Duke Math. J., 159 (2011), 223-274. doi:10.1215/00127094-1415869. · Zbl 1252.18026 · doi:10.1215/00127094-1415869
[20] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer, Berlin, 1995. · Zbl 0819.13001
[21] A. Floer, H. Hofer and D. Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J., 80 (1995), 251-292. doi:10.1215/S0012-7094-95-08010-7. · Zbl 0846.58025 · doi:10.1215/S0012-7094-95-08010-7
[22] K. Fukaya and Y. G. Oh, Zero-loop open strings in the cotangent bundle and Morse homotopy, Asian J. Math., 1 (1997), 96-180. · Zbl 0938.32009 · doi:10.4310/AJM.1997.v1.n1.a5
[23] Fukaya, K.; Oh, Y.; Ohta, H.; Ono, K., Lagrangian Floer theory on compact toric manifolds: survey, No. XVII, 229-298 (2012), Boston · Zbl 1382.53001 · doi:10.4310/SDG.2012.v17.n1.a6
[24] K. Fukaya, Y. G. Oh, H. Ohta and K. Ono, Lagrangian intersection Floer theory—anomaly and obstruction, Am. Math. Soc., Providence, 2007. · Zbl 1181.53003
[25] K. Fukaya, Y. G. Oh, H. Ohta and K. Ono, Lagrangian surgery and metamorphosis of pseudo-holomorphic polygons, 2009. Preprint, available at https://www.math.kyotou.ac.jp/ fukaya/fukaya.html.
[26] K. Fukaya, Y. G. Oh, H. Ohta and K. Ono, Lagrangian Floer theory on compact toric manifolds, I, Duke Math. J., 151 (2010), 23-175. doi:10.1215/00127094-2009-062. · Zbl 1190.53078 · doi:10.1215/00127094-2009-062
[27] K. Fukaya, Y. G. Oh, H. Ohta and K. Ono, Lagrangian Floer theory on compact toric manifolds II: bulk deformations, Sel. Math. New Ser., 17 (2011), 609-711. doi:10.1007/s00029-011-0057-z. · Zbl 1234.53023 · doi:10.1007/s00029-011-0057-z
[28] S. Ganatra, Symplectic Cohomology and Duality for the Wrapped Fukaya Category, Ph.D. thesis, MIT, 2012. · Zbl 0843.14014
[29] S. Ganatra, T. Perutz and N. Sheridan, Mirror symmetry: from categories to curve counts, 2015, arXiv:1510.03839. · Zbl 0881.55006
[30] E. Getzler, Cartan homotopy formulas and the Gauss-Manin connection in cyclic homology, Isr. Math. Conf. Proc., 7 (1993), 1-12. · Zbl 0844.18007
[31] E. Getzler, Lie theory for nilpotent L∞\(L_{\infty}\) algebras, Ann. Math., 170 (2009), 271-301. · Zbl 1246.17025 · doi:10.4007/annals.2009.170.271
[32] A. Givental, Equivariant Gromov-Witten invariants, Int. Math. Res. Not., 1996 (1996), 613-663. doi:10.1155/S1073792896000414. · Zbl 0881.55006 · doi:10.1155/S1073792896000414
[33] M. Gross, Tropical geometry and mirror symmetry, CBMS Regional Conference Series in Mathematics, vol. 114, Am. Math. Soc., Providence, 2011. · Zbl 1215.14061
[34] G. Hochschild, B. Kostant and A. Rosenberg, Differential forms on regular affine algebras, Trans. Am. Math. Soc., 102 (1962), 383-408. · Zbl 0102.27701 · doi:10.1090/S0002-9947-1962-0142598-8
[35] Hori, K., Linear models of supersymmetric D \(D\)-branes, Seoul, 2000, River Edge · Zbl 1022.81045 · doi:10.1142/9789812799821_0005
[36] M. Jinzenji, On Quantum Cohomology Rings for Hypersurfaces in CPN−\(1\mathbf{CP}^{N-1} \), J. Math. Phys., 38 (1997), 6613-6638. doi:10.1063/1.532228. · Zbl 0898.32012 · doi:10.1063/1.532228
[37] A. Kapustin and Y. Li, D \(D\)-branes in topological minimal models: the Landau-Ginzburg approach, J. High Energy Phys., 07 (2004), 26 pp. (electronic). doi:10.1088/1126-6708/2004/07/045. · Zbl 1130.53055
[38] A. Keating, Lagrangian tori in four-dimensional Milnor fibres, Geom. Funct. Anal., 25 (2015), 1822-1901. doi:10.1007/s00039-015-0353-4. · Zbl 1338.32025 · doi:10.1007/s00039-015-0353-4
[39] Kontsevich, M., Homological algebra of mirror symmetry, Zürich, 1994 · Zbl 0846.53021
[40] M. Kontsevich, Lectures at ENS Paris. Notes by J. Bellaiche, J.-F. Dat, I. Marin, G. Racinet and H. Randriambololona (1998). · Zbl 1226.14028
[41] M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys., 66 (2003), 157-216. doi:10.1023/B:MATH.0000027508.00421.bf. · Zbl 1058.53065 · doi:10.1023/B:MATH.0000027508.00421.bf
[42] Kontsevich, M.; Soibelman, Y., Notes on A∞\(A_{\infty}\) algebras, A∞\(A_{\infty}\) categories and non-commutative geometry. I, No. 757, 153-219 (2008), Berlin · Zbl 1202.81120
[43] T. Lada and M. Markl, Strongly homotopy Lie algebras, Commun. Algebra, 23 (1995), 2147-2161. doi:10.1080/00927879508825335. · Zbl 0999.17019 · doi:10.1080/00927879508825335
[44] H. Lawson and M. Michelsohn, Spin geometry, Princeton University Press, Princeton, 1989. · Zbl 0688.57001
[45] L. Lazzarini, Relative frames on J \(J\)-holomorphic curves, J. Fixed Point Theory Appl., 9 (2011), 213-256. doi:10.1007/s11784-010-0004-1. · Zbl 1236.57035 · doi:10.1007/s11784-010-0004-1
[46] J. L. Loday, Cyclic homology, Grundlehren der mathematischen Wissenschaften, vol. 301, 1998. · Zbl 0885.18007
[47] D. McDuff and D. Salamon, J-holomorphic Curves and Symplectic Topology, American Mathematical Society Colloquium Publications, Am. Math. Soc., Providence, 2004. · Zbl 1064.53051 · doi:10.1090/coll/052
[48] Y. G. Oh, Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks I, Commun. Pure Appl. Math., 46 (1993), 949-993. doi:10.1002/cpa.3160460702. · Zbl 0795.58019 · doi:10.1002/cpa.3160460702
[49] Y. G. Oh, Addendum to ‘Floer cohomology of Lagrangian intersections and pseudo-holomorphic discs, I’, Commun. Pure Appl. Math., 48 (1995), 1299-1302. doi:10.1002/cpa.3160481104. · Zbl 0847.58036 · doi:10.1002/cpa.3160481104
[50] Y. G. Oh and D. Kwon, Structure of the image of (pseudo)-holomorphic disks with totally real boundary conditions, Commun. Anal. Geom., 8 (2000), 31-82. · Zbl 0951.32025 · doi:10.4310/CAG.2000.v8.n1.a2
[51] D. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Proc. Steklov Inst. Math., 246 (2004), 227-248. · Zbl 1101.81093
[52] Piunikhin, S.; Salamon, D.; Schwarz, M., Symplectic Floer-Donaldson theory and quantum cohomology, 171-200 (1996), Cambridge · Zbl 0874.53031
[53] A. F. Ritter and I. Smith, The monotone wrapped Fukaya category and the open-closed string map, Sel. Math. New Ser., to appear. · Zbl 1359.53068
[54] Y. Ruan and G. Tian, A mathematical theory of quantum cohomology, J. Differ. Geom., 42 (1995), 259-367. · Zbl 0860.58005
[55] P. Seidel, Graded Lagrangian submanifolds, Bull. Soc. Math. Fr., 128 (1999), 103-149. · Zbl 0992.53059
[56] Seidel, P., Fukaya categories and deformations, Beijing · Zbl 1014.53052
[57] P. Seidel, Homological mirror symmetry for the quartic surface, Mem. Am. Math. Soc. (2015). doi:10.1090/memo/1116. · Zbl 1334.53091 · doi:10.1090/memo/1116
[58] Seidel, P., A biased view of symplectic cohomology, Harvard, 2006 · Zbl 1165.57020
[59] P. Seidel, A∞\(A_{\infty}\) subalgebras and natural transformations, Homol. Homotopy Appl., 10 (2008), 83-114. · Zbl 1215.53079 · doi:10.4310/HHA.2008.v10.n2.a4
[60] P. Seidel, Fukaya categories and Picard-Lefschetz Theory, J. Eur. Math. Soc. (2008). · Zbl 1159.53001
[61] P. Seidel, Suspending Lefschetz fibrations, with an application to local mirror symmetry, Commun. Math. Phys., 297 (2010), 515-528. doi:10.1007/s00220-009-0944-8. · Zbl 1197.14044 · doi:10.1007/s00220-009-0944-8
[62] P. Seidel, Abstract analogues of flux as symplectic invariants, Mém. Soc. Math. Fr., 137 (2014), 1-135. · Zbl 1318.53098
[63] P. Seidel, Homological mirror symmetry for the genus two curve, J. Algebraic Geom., 20 (2011), 727-769. doi:10.1090/S1056-3911-10-00550-3. · Zbl 1226.14028 · doi:10.1090/S1056-3911-10-00550-3
[64] P. Seidel, Fukaya A∞\(A_{\infty}\)-structures associated to Lefschetz fibrations II, 2014, arXiv:1404.1352. · Zbl 1267.53094
[65] P. Seidel and R. Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J., 108 (2001), 37-108. doi:10.1215/S0012-7094-01-10812-0. · Zbl 1092.14025 · doi:10.1215/S0012-7094-01-10812-0
[66] N. Sheridan, On the homological mirror symmetry conjecture for pairs of pants, J. Differ. Geom., 89 (2011), 271-367. · Zbl 1255.53065
[67] N. Sheridan, Homological mirror symmetry for Calabi-Yau hypersurfaces in projective space, Invent. Math., 199 (2015), 1-186. · Zbl 1344.53073 · doi:10.1007/s00222-014-0507-2
[68] I. Smith, Floer cohomology and pencils of quadrics, Invent. Math., 189 (2012), 149-250. doi:10.1007/s00222-011-0364-1. · Zbl 1255.14032 · doi:10.1007/s00222-011-0364-1
[69] T. Tradler, Infinity-inner-products on A-infinity-algebras, J. Homotopy Relat. Struct., 3 (2008), 245-271. · Zbl 1243.16008
[70] C. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. · Zbl 0797.18001 · doi:10.1017/CBO9781139644136
[71] Y. Yoshino, Cohen-Macaulay Modules over Cohen-Macaulay Rings, Mathematical Society Lecture Note Series, vol. 146, Cambridge University Press, London, 1990. · Zbl 0745.13003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.