×

Exact Calabi-Yau categories and odd-dimensional Lagrangian spheres. (English) Zbl 1536.53163

Summary: An exact Calabi-Yau structure, originally introduced by B. Keller [J. Reine Angew. Math. 654, 125–180 (2011; Zbl 1220.18012)], is a special kind of smooth Calabi-Yau structure in the sense of M. Kontsevich et al. [“Pre-Calabi-Yau algebras and topological quantum field theories”, Preprint, arXiv:2112.14667]. For a Weinstein manifold \(M\), the existence of an exact Calabi-Yau structure on the wrapped Fukaya category \(\mathcal{W} (M)\) imposes strong restrictions on its symplectic topology. Under the cyclic open-closed map constructed by S. Ganatra [Geom. Topol. 27, No. 9, 3461–3584 (2023; Zbl 07777465)], an exact Calabi-Yau structure on \(\mathcal{W}(M)\) induces a class \(\tilde{b}\) in the degree one equivariant symplectic cohomology \(\mathrm{SH}^1_{S^1} (M)\). Any Weinstein manifold admitting a quasi-dilation in the sense of P. Seidel and J. P. Solomon [Geom. Funct. Anal. 22, No. 2, 443–477 (2012; Zbl 1250.53078)] has an exact Calabi-Yau structure on \(\mathcal{W}(M)\). We prove that there are many Weinstein manifolds whose wrapped Fukaya categories are exact Calabi-Yau despite the fact that there is no quasi-dilation in \(\mathrm{SH}^1 (M)\); a typical example is given by the affine hypersurface \(\{x^3 +y^3 +z^3 +w^3 =1\} \subset \mathbb{C}^4\). As an application, we prove the homological essentiality of Lagrangian spheres in many odd-dimensional smooth affine varieties with exact Calabi-Yau wrapped Fukaya categories.

MSC:

53D37 Symplectic aspects of mirror symmetry, homological mirror symmetry, and Fukaya category
53D40 Symplectic aspects of Floer homology and cohomology
53D12 Lagrangian submanifolds; Maslov index
14J33 Mirror symmetry (algebro-geometric aspects)
14J32 Calabi-Yau manifolds (algebro-geometric aspects)

References:

[1] A. Abbondandolo and M. Schwarz, On the Floer homology of cotangent bundles. Comm. Pure Appl. Math. 59 (2006), no. 2, 254-316 Zbl 1084.53074 MR 2190223 · Zbl 1084.53074 · doi:10.1002/cpa.20090
[2] M. Abouzaid, A geometric criterion for generating the Fukaya category. Publ. Math. Inst. Hautes Études Sci. (2010), no. 112, 191-240 Zbl 1215.53078 MR 2737980 · Zbl 1215.53078 · doi:10.1007/s10240-010-0028-5
[3] M. Abouzaid, On the wrapped Fukaya category and based loops. J. Symplectic Geom. 10 (2012), no. 1, 27-79 Zbl 1298.53092 MR 2904032 · Zbl 1298.53092 · doi:10.4310/JSG.2012.v10.n1.a3
[4] M. Abouzaid, Symplectic cohomology and Viterbo’s theorem. In Free loop spaces in geometry and topology, pp. 271-485, IRMA Lect. Math. Theor. Phys. 24, European Math-ematical Society (EMS), Zürich, 2015 Zbl 1385.53078 MR 3444367 · Zbl 1385.53078
[5] M. Abouzaid, D. Auroux, and L. Katzarkov, Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces. Publ. Math. Inst. Hautes Études Sci. 123 (2016), 199-282 Zbl 1368.14056 MR 3502098 · Zbl 1368.14056 · doi:10.1007/s10240-016-0081-9
[6] M. Abouzaid and P. Seidel, An open string analogue of Viterbo functoriality. Geom. Topol. 14 (2010), no. 2, 627-718 Zbl 1195.53106 MR 2602848 · Zbl 1195.53106 · doi:10.2140/gt.2010.14.627
[7] A.-L. Biolley, Floer homology, symplectic and complex hyperbolicities. 2004, arXiv:math.SG/0404551
[8] F. Bourgeois, T. Ekholm, and Y. Eliashberg, Effect of Legendrian surgery. With an appendix by Sheel Ganatra and Maksim Maydanskiy. Geom. Topol. 16 (2012), no. 1, 301-389 Zbl 1322.53080 MR 2916289 · Zbl 1322.53080 · doi:10.2140/gt.2012.16.301
[9] F. Bourgeois and A. Oancea, An exact sequence for contact-and symplectic homology. Invent. Math. 175 (2009), no. 3, 611-680 Zbl 1167.53071 MR 2471597 · Zbl 1167.53071 · doi:10.1007/s00222-008-0159-1
[10] F. Bourgeois and A. Oancea, The Gysin exact sequence for S 1 -equivariant symplectic homology. J. Topol. Anal. 5 (2013), no. 4, 361-407 Zbl 1405.53121 MR 3152208 · Zbl 1405.53121 · doi:10.1142/S1793525313500210
[11] F. Bourgeois and A. Oancea, S 1 -equivariant symplectic homology and linearized contact homology. Int. Math. Res. Not. IMRN 2017 (2017), no. 13, 3849-3937 Zbl 1405.53123 MR 3671507 · Zbl 1405.53123 · doi:10.1093/imrn/rnw029
[12] R. Casals and E. Murphy, Legendrian fronts for affine varieties. Duke Math. J. 168 (2019), no. 2, 225-323 Zbl 1490.57034 MR 3909897 · Zbl 1490.57034 · doi:10.1215/00127094-2018-0055
[13] B. Chantraine, G. Dimitroglou-Rizell, P. Ghiggini, and R. Golovko, Geometric generation of the wrapped Fukaya category of Weinstein manifolds and sectors. 2017, arXiv:1712.09126, to appear in Ann. Sci. Éc. Norm. Supér.
[14] M. Chas and D. Sullivan, String topology. 1999, arXiv:math/9911159
[15] X. Chen, S. Yang, and G. Zhou, Batalin-Vilkovisky algebras and the noncommutative Poincaré duality of Koszul Calabi-Yau algebras. J. Pure Appl. Algebra 220 (2016), no. 7, 2500-2532 Zbl 1401.14018 MR 3457981 · Zbl 1401.14018 · doi:10.1016/j.jpaa.2015.11.016
[16] K. Cieliebak and J. Latschev, The role of string topology in symplectic field theory. In New perspectives and challenges in symplectic field theory, pp. 113-146, CRM Proc. Lecture Notes 49, American Mathematical Society, Providence, RI, 2009 Zbl 1214.53067 MR 2555935 · Zbl 1214.53067 · doi:10.1090/crmp/049/04
[17] K. Cieliebak and A. Oancea, Symplectic homology and the Eilenberg-Steenrod axioms. Algebr. Geom. Topol. 18 (2018), no. 4, 1953-2130 Zbl 1392.53093 MR 3797062 · Zbl 1392.53093 · doi:10.2140/agt.2018.18.1953
[18] R. Cohen and S. Ganatra, Calabi-Yau categories, string topology, and the open-closed floer field theory of the cotangent bundle. 2015, http://math.stanford.edu/ ralph/papers.html, visited on 16 November 2023
[19] R. L. Cohen, J. D. S. Jones, and J. Yan, The loop homology algebra of spheres and projec-tive spaces. In Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001), pp. 77-92, Progr. Math. 215, Birkhäuser, Basel, 2004 Zbl 1054.55006 MR 2039760 · Zbl 1054.55006
[20] B. Davison, Superpotential algebras and manifolds. Adv. Math. 231 (2012), no. 2, 879-912 Zbl 1278.53083 MR 2955196 · Zbl 1278.53083 · doi:10.1016/j.aim.2012.04.033
[21] L. Diogo and S. T. Lisi, Symplectic homology of complements of smooth divisors. J. Topol. 12 (2019), no. 3, 967-1030 Zbl 1475.53097 MR 4072162 · Zbl 1475.53097 · doi:10.1112/topo.12105
[22] T. Ekholm, Holomorphic curves for Legendrian surgery. 2019, arXiv:1906.07228
[23] T. Ekholm and Y. Lekili, Duality between Lagrangian and Legendrian invariants. Geom. Topol. 27 (2023), no. 6, 2049-2179 MR 4634745 · Zbl 1536.53166 · doi:10.2140/gt.2023.27.2049
[24] Y. Eliashberg, Weinstein manifolds revisited. In Modern geometry: a celebration of the work of Simon Donaldson, pp. 59-82, Proc. Sympos. Pure Math. 99, American Mathe-matical Society, Providence, RI, 2018 Zbl 1448.53083 MR 3838879 · Zbl 1448.53083 · doi:10.1090/pspum/099/01737
[25] Y. Eliashberg, A. Givental, and H. Hofer, Introduction to symplectic field theory. Geom. Funct. Anal. (2000), no. Special Volume, Part II, 560-673 Zbl 0989.81114 MR 1826267 · Zbl 0989.81114 · doi:10.1007/978-3-0346-0425-3_4
[26] T. Etgü and Y. Lekili, Koszul duality patterns in Floer theory. Geom. Topol. 21 (2017), no. 6, 3313-3389 Zbl 1378.57041 MR 3692968 · Zbl 1378.57041 · doi:10.2140/gt.2017.21.3313
[27] S. Ganatra, Symplectic Cohomology and Duality for the Wrapped Fukaya Category. Pro-Quest LLC, Ann Arbor, MI, 2012 MR 3121862
[28] S. Ganatra, Cyclic homology, S 1 -equivariant Floer cohomology, and Calabi-Yau struc-tures. 2019, arXiv:1912.13510, to appear in Geom. Topol.
[29] S. Ganatra, J. Pardon, and V. Shende, Sectorial descent for wrapped Fukaya categories. 2018, arXiv:1809.03427, to appear in J. Am. Math. Soc.
[30] S. Ganatra, T. Perutz, and N. Sheridan, Mirror symmetry: From categories to curve-counts. 2015, arXiv:1510.03839
[31] S. Ganatra and D. Pomerleano, Symplectic cohomology rings of affine varieties in the topological limit. Geom. Funct. Anal. 30 (2020), no. 2, 334-456 Zbl 1451.53118 MR 4108612 · Zbl 1451.53118 · doi:10.1007/s00039-020-00529-1
[32] S. Ganatra and D. Pomerleano, A log PSS morphism with applications to Lagrangian embeddings. J. Topol. 14 (2021), no. 1, 291-368 Zbl 1469.53126 MR 4235013 · Zbl 1469.53126 · doi:10.1112/topo.12183
[33] V. Ginzburg, Calabi-Yau algebras. 2006, arXiv:math.AG/0612139
[34] M. Gross, P. Hacking, and S. Keel, Mirror symmetry for log Calabi-Yau surfaces I. Publ. Math. Inst. Hautes Études Sci. 122 (2015), 65-168 Zbl 1351.14024 MR 3415066 · Zbl 1351.14024 · doi:10.1007/s10240-015-0073-1
[35] J. Gutt and M. Hutchings, Symplectic capacities from positive S 1 -equivariant symplectic homology. Algebr. Geom. Topol. 18 (2018), no. 6, 3537-3600 Zbl 1411.53062 MR 3868228 · Zbl 1411.53062 · doi:10.2140/agt.2018.18.3537
[36] D. Hermann, Holomorphic curves and Hamiltonian systems in an open set with restricted contact-type boundary. Duke Math. J. 103 (2000), no. 2, 335-374 Zbl 1011.53058 MR 1760631 · Zbl 1011.53058 · doi:10.1215/S0012-7094-00-10327-4
[37] J. D. S. Jones and J. McCleary, Hochschild homology, cyclic homology, and the cobar con-struction. In Adams Memorial Symposium on Algebraic Topology, 1 (Manchester, 1990), pp. 53-65, London Math. Soc. Lecture Note Ser. 175, Cambridge University Press, Cam-bridge, 1992 Zbl 0752.55003 MR 1170570 · Zbl 0752.55003 · doi:10.1017/CBO9780511526305.005
[38] A. Keating, Lagrangian tori in four-dimensional Milnor fibres. Geom. Funct. Anal. 25 (2015), no. 6, 1822-1901 Zbl 1338.32025 MR 3432159 · Zbl 1338.32025 · doi:10.1007/s00039-015-0353-4
[39] A. Keating, Homological mirror symmetry for hypersurface cusp singularities. Selecta Math. (N.S.) 24 (2018), no. 2, 1411-1452 Zbl 1393.53086 MR 3782425 · Zbl 1393.53086 · doi:10.1007/s00029-017-0334-6
[40] B. Keller, Derived invariance of higher structures on the Hochschild complex. 2003, https://webusers.imj-prg.fr/ bernhard.keller/publ/dih.pdf, visited on 16 November 2023
[41] B. Keller, Deformed Calabi-Yau completions. With an appendix by Michel Van den Bergh. J. Reine Angew. Math. 654 (2011), 125-180 Zbl 1220.18012 MR 2795754 · Zbl 1220.18012 · doi:10.1515/CRELLE.2011.031
[42] B. Keller, Erratum to “Deformed Calabi-Yau completions”. 2018, arXiv:1809.01126
[43] M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invari-ants and cluster transformations. 2008, arXiv:0811.2435
[44] M. Kontsevich and Y. Soibelman, Notes on A 1 -algebras, A 1 -categories and non-commutative geometry. In Homological mirror symmetry, pp. 153-219, Lecture Notes in Phys. 757, Springer, Berlin, 2009 Zbl 1202.81120 MR 2596638 · Zbl 1202.81120
[45] M. Kontsevich and Y. Vlassopoulos, Pre-Calabi-Yau algebras and topological quantum field theories. 2021, arXiv:2112.14667
[46] O. Lazarev, Symplectic flexibility and the Grothendieck group of the Fukaya category. J. Topol. 15 (2022), no. 1, 204-237 Zbl 07738204 MR 4407494 · Zbl 1528.53080 · doi:10.1112/topo.12217
[47] Y. Lekili and A. Polishchuk, Homological mirror symmetry for higher-dimensional pairs of pants. Compos. Math. 156 (2020), no. 7, 1310-1347 Zbl 1467.14099 MR 4120165 · Zbl 1467.14099 · doi:10.1112/s0010437x20007150
[48] Y. Lekili and K. Ueda, Homological mirror symmetry for Milnor fibers via moduli of A 1 -structures. J. Topol. 15 (2022), no. 3, 1058-1106 Zbl 07738179 MR 4442683 · Zbl 1539.14079 · doi:10.1112/topo.12248
[49] Y. Li, Koszul duality via suspending Lefschetz fibrations. J. Topol. 12 (2019), no. 4, 1174-1245 Zbl 1477.53108 MR 3977875 · Zbl 1477.53108 · doi:10.1112/topo.12113
[50] Y. Li, Nonexistence of exact Lagrangian tori in affine conic bundles over C n . J. Symplectic Geom. 20 (2022), no. 5, 1067-1105 Zbl 07681987 MR 4583955 · Zbl 1521.53063 · doi:10.4310/JSG.2022.v20.n5.a3
[51] J.-L. Loday, Cyclic homology. 2nd edn., Grundlehren Math. Wiss. 301, Springer, Berlin, 1998 Zbl 0885.18007 MR 1600246 · Zbl 0885.18007 · doi:10.1007/978-3-662-11389-9
[52] G. Lu, Gromov-Witten invariants and pseudo symplectic capacities. Israel J. Math. 156 (2006), 1-63 Zbl 1133.53059 MR 2282367 · Zbl 1133.53059 · doi:10.1007/BF02773823
[53] M. McLean, Symplectic invariance of uniruled affine varieties and log Kodaira dimension. Duke Math. J. 163 (2014), no. 10, 1929-1964 Zbl 1312.53107 MR 3229045 · Zbl 1312.53107 · doi:10.1215/00127094-2738748
[54] J. Pascaleff, On the symplectic cohomology of log Calabi-Yau surfaces. Geom. Topol. 23 (2019), no. 6, 2701-2792 Zbl 1429.53100 MR 4039179 · Zbl 1429.53100 · doi:10.2140/gt.2019.23.2701
[55] D. Rutherford and M. Sullivan, Cellular Legendrian contact homology for surfaces, part I. Adv. Math. 374 (2020), article no. 107348, 71 pp. Zbl 1475.53099 MR 4133520 · Zbl 1475.53099 · doi:10.1016/j.aim.2020.107348
[56] P. Seidel, Lectures on categorical dynamics and symplectic topology. http://www-math.mit.edu/ seidel/, visited on 16 November 2023
[57] P. Seidel, Graded Lagrangian submanifolds. Bull. Soc. Math. France 128 (2000), no. 1, 103-149 Zbl 0992.53059 MR 1765826 · Zbl 0992.53059 · doi:10.24033/bsmf.2365
[58] P. Seidel, Fukaya categories and deformations. In Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pp. 351-360, Higher Education Press, Beijing, 2002 Zbl 1014.53052 MR 1957046 · Zbl 1014.53052
[59] P. Seidel, A long exact sequence for symplectic Floer cohomology. Topology 42 (2003), no. 5, 1003-1063 Zbl 1032.57035 MR 1978046 · Zbl 1032.57035 · doi:10.1016/S0040-9383(02)00028-9
[60] P. Seidel, A biased view of symplectic cohomology. In Current developments in mathe-matics, 2006, pp. 211-253, International Press, Somerville, MA, 2008 Zbl 1165.57020 MR 2459307 · Zbl 1165.57020
[61] P. Seidel, Fukaya categories and Picard-Lefschetz theory. Zur. Lect. Adv. Math., Euro-pean Mathematical Society (EMS), Zürich, 2008 Zbl 1159.53001 MR 2441780 · Zbl 1159.53001 · doi:10.4171/063
[62] P. Seidel, Lagrangian homology spheres in .A m / Milnor fibres via C -equivariant A 1 -modules. Geom. Topol. 16 (2012), no. 4, 2343-2389 Zbl 1269.53075 MR 3033519 · Zbl 1269.53075 · doi:10.2140/gt.2012.16.2343
[63] P. Seidel, Disjoinable Lagrangian spheres and dilations. Invent. Math. 197 (2014), no. 2, 299-359 Zbl 1305.53081 MR 3232008 · Zbl 1305.53081 · doi:10.1007/s00222-013-0484-x
[64] P. Seidel, The equivariant pair-of-pants product in fixed point Floer cohomology. Geom. Funct. Anal. 25 (2015), no. 3, 942-1007 Zbl 1331.53119 MR 3361776 · Zbl 1331.53119 · doi:10.1007/s00039-015-0331-x
[65] P. Seidel, Picard-Lefschetz theory and dilating C -actions. J. Topol. 8 (2015), no. 4, 1167-1201 Zbl 1332.53104 MR 3431673 · Zbl 1332.53104 · doi:10.1112/jtopol/jtv029
[66] P. Seidel and I. Smith, The symplectic topology of Ramanujam’s surface. Comment. Math. Helv. 80 (2005), no. 4, 859-881 Zbl 1098.53065 MR 2182703 · Zbl 1098.53065 · doi:10.4171/CMH/37
[67] P. Seidel and J. P. Solomon, Symplectic cohomology and q-intersection numbers. Geom. Funct. Anal. 22 (2012), no. 2, 443-477 Zbl 1250.53078 MR 2929070 · Zbl 1250.53078 · doi:10.1007/s00039-012-0159-6
[68] I. Smith, Quiver algebras as Fukaya categories. Geom. Topol. 19 (2015), no. 5, 2557-2617 Zbl 1328.53109 MR 3416110 · Zbl 1328.53109 · doi:10.2140/gt.2015.19.2557
[69] I. Smith and R. Thomas, Symplectic surgeries from singularities. Turkish J. Math. 27 (2003), no. 1, 231-250 Zbl 1031.57022 MR 1975340 · Zbl 1031.57022
[70] F. Tabing, Integral string Lie algebra structure of spheres. 2016, arXiv:1611.07693
[71] T. tom Dieck and T. Petrie, Contractible affine surfaces of Kodaira dimension one. Japan. J. Math. (N.S.) 16 (1990), no. 1, 147-169 Zbl 0721.14018 MR 1064448 · Zbl 0721.14018 · doi:10.4099/math1924.16.147
[72] T. Tradler, The Batalin-Vilkovisky algebra on Hochschild cohomology induced by infinity inner products. Ann. Inst. Fourier (Grenoble) 58 (2008), no. 7, 2351-2379 Zbl 1218.16004 MR 2498354 · Zbl 1218.16004 · doi:10.5802/aif.2417
[73] M. Van den Bergh, Double Poisson algebras. Trans. Amer. Math. Soc. 360 (2008), no. 11, 5711-5769 Zbl 1157.53046 MR 2425689 · Zbl 1157.53046 · doi:10.1090/S0002-9947-08-04518-2
[74] M. Van den Bergh, Calabi-Yau algebras and superpotentials. Selecta Math. (N.S.) 21 (2015), no. 2, 555-603 Zbl 1378.16016 MR 3338683 · Zbl 1378.16016 · doi:10.1007/s00029-014-0166-6
[75] O. van Koert, Lecture notes on stabilization of contact open books. Münster J. Math. 10 (2017), no. 2, 425-455 Zbl 1387.53113 MR 3725503 · Zbl 1387.53113 · doi:10.17879/70299609615
[76] C. Viterbo, Functors and computations in Floer homology with applications. I. Geom. Funct. Anal. 9 (1999), no. 5, 985-1033 Zbl 0954.57015 MR 1726235 · Zbl 0954.57015 · doi:10.1007/s000390050106
[77] J. Zhao, Periodic symplectic cohomologies and obstructions to exact Lagrangian immer-sions. Ph.D. thesis, Columbia University, 2016
[78] Z. Zhou, Symplectic fillings of asymptotically dynamically convex manifolds I. J. Topol. 14 (2021), no. 1, 112-182 Zbl 1491.57024 MR 4186135 · Zbl 1491.57024 · doi:10.1112/topo.12177
[79] Z. Zhou, Symplectic fillings of asymptotically dynamically convex manifolds II-k-dilations. Adv. Math. 406 (2022), article no. 108522, 62 pp. Zbl 1503.53159 MR 4438065 · Zbl 1503.53159 · doi:10.1016/j.aim.2022.108522
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.