×

Critical Casimir effect: exact results. (English) Zbl 1520.81150

Summary: In any medium there are fluctuations due to temperature or due to the quantum nature of its constituents. If a material body is immersed into such a medium, its shape and the properties of its constituents modify the properties of the surrounding medium and its fluctuations. If in the same medium there is a second body then – in addition to all direct interactions between them – the modifications due to the first body influence the modifications due to the second body. This mutual influence results in a force between these bodies. If the excitations of the medium, which mediate the effective interaction between the bodies, are massless, this force is long-ranged and nowadays known as a Casimir force. If the fluctuating medium consists of the confined electromagnetic field in vacuum, one speaks of the quantum mechanical Casimir effect. In the case that the order parameter of material fields fluctuates – such as differences of number densities or concentrations – and that the corresponding fluctuations of the order parameter are long-ranged, one speaks of the critical Casimir effect. This holds, e.g., in the case of systems which undergo a second-order phase transition and which are thermodynamically located near the corresponding critical point, or for systems with a broken continuous symmetry exhibiting Goldstone mode excitations. Here we review the currently available exact results concerning the critical Casimir effect in systems encompassing the one-dimensional Ising, XY, and Heisenberg models, the two-dimensional Ising model, the Gaussian and the spherical models, as well as the mean field results for the Ising and the XY model. Special attention is paid to the influence of the boundary conditions on the behavior of the Casimir force. We present results both for the case of classical critical fluctuations if the system possesses a critical point at a non-zero temperature, as well as the case of quantum systems undergoing a continuous phase transition at zero temperature as function of certain parameters. As confinements we consider the film, the sphere-plane, and the sphere-sphere geometries. We discuss systems governed by short-ranged, by subleading long-ranged (i.e., of the van der Waals type), and by leading long-ranged interactions. In order to put the critical Casimir effect into the proper context and in order to make the review as self-contained as possible, basic facts about the theory of phase transitions, the theory of critical phenomena in classical and quantum systems, and finite-size scaling theory are recalled. Whenever possible, a discussion of the relevance of the exact results towards an understanding of available experiments is presented. The eventual applicability of the present results for certain devices is pointed out, too.

MSC:

81T55 Casimir effect in quantum field theory
82B26 Phase transitions (general) in equilibrium statistical mechanics
82C27 Dynamic critical phenomena in statistical mechanics
30C75 Extremal problems for conformal and quasiconformal mappings, other methods
65F35 Numerical computation of matrix norms, conditioning, scaling
81R40 Symmetry breaking in quantum theory
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
80A10 Classical and relativistic thermodynamics
55R25 Sphere bundles and vector bundles in algebraic topology
00A79 Physics

Software:

DLMF

References:

[1] Casimir, H. B., On the attraction between two perfectly conducting plates, Proc. K. Ned. Akad. Wet., 51, 793-796 (1948) · Zbl 0031.19005
[2] Mostepanenko, V. M.; Trunov, N. N., The Casimir Effect and Its Applications (1990), Energoatomizdat: Energoatomizdat Moscow, in Russian; English version: Clarendon, New York, 1997
[3] Milonni, P. W., The Quantum Vacuum (1994), Academic: Academic San Diego
[4] Kardar, M.; Golestanian, R., The “friction” of vacuum, and other fluctuation-induced forces, Rev. Modern Phys., 71, 4, 1233-1245 (1999)
[5] Milton, K. A., The casimir effect: recent controversies and progress, J. Phys. A: Math. Gen., 37, R209-R277 (2004) · Zbl 1062.81153
[6] (Dalvit, D.; Milonni, P.; Roberts, D.; da Rosa, F., Casimir Physics. Casimir Physics, Lecture Notes in Physics, vol. 834 (2011), Springer: Springer Berlin) · Zbl 1220.81006
[7] Fisher, M. E.; de Gennes, P. G., Phénomènes aux parois dans un mélange binaire critique, C. R. Seanc. Acad. Sci. Paris Ser. B, 287, 207-209 (1978)
[8] Krech, M., Casimir Effect in Critical Systems (1994), World Scientific: World Scientific Singapore
[9] Brankov, J. G.; Dantchev, D. M.; Tonchev, N. S., The Theory of Critical Phenomena in Finite-Size Systems - Scaling and Quantum Effects (2000), World Scientific: World Scientific Singapore · Zbl 0967.82002
[10] Baxter, R. J., Exactly Solved Models in Statistical Mechanics (1982), Academic: Academic London · Zbl 0538.60093
[11] de Gennes, P.-G., (Simple Views on Condensed Matter. Simple Views on Condensed Matter, Series in Modern Condensed Matter Physics, vol. 12 (2003), World Scientific: World Scientific Singapore) · Zbl 1077.82002
[12] Symanzik, K., Schrödinger representation and Casimir effect in renormalizable quantum field theory, Nuclear Phys. B, 190, 1-44 (1981)
[13] Chamati, H.; Dantchev, D. M.; Tonchev, N. S., Casimir amplitudes in a quantum spherical model with long-range interaction, Eur. Phys. J. B, 14, 307-316 (2000)
[14] Plunien, G.; Müller, B.; Greiner, W., The Casimir effect, Phys. Rep., 134, 2-3, 87-193 (1986), URL http://www.sciencedirect.com/science/article/pii/0370157386900207
[15] Mostepanenko, V. M.; Trunov, N. N., The Casimir effect and its applications, Sov. Phys. Uspekhi, 31, 11, 965 (1988), URL http://stacks.iop.org/0038-5670/31/i=11/a=R01
[16] Long-Range Casimir Forces, Finite Systems and Multiparticle Dynamics (1993), Springer: Springer Berlin
[17] (Bordag, M., The Casimir Effect 50 Years Later (1999), World Scientific: World Scientific Singapore), proceedings of the Fourth Workshop on Quantum Field Theory under the Influence of External Conditions · Zbl 0923.00028
[18] Bordag, M.; Mohideen, U.; Mostepanenko, V. M., New developments in the Casimir effect, Phys. Rep., 353, 1-205 (2001) · Zbl 0972.81212
[19] Milton, K. A., The Casimir Effect: Physical Manifestations of Zero-Point Energy (2001), World Scientific: World Scientific Singapore · Zbl 1025.81003
[20] Lamoreaux, S. K., The casimir force: background, experiments, and applications, Rep. Progr. Phys., 68, 201-236 (2005)
[21] Klimchitskaya, G. L.; Mostepanenko, V. M., Experiment and theory in the Casimir effect, Contemp. Phys., 47, 3, 131-144 (2006), arXiv:http://www.tandfonline.com/doi/pdf/10.1080/00107510600693683 URL http://www.tandfonline.com/doi/abs/10.1080/00107510600693683
[22] Genet, C.; Lambrecht, A.; Reynaud, S., The Casimir effect in the nanoworld, Eur. Phys. J. Spec. Top., 160, 183-193 (2008)
[23] Bordag, M.; Klimchitskaya, G. L.; Mohideen, U.; Mostepanenko, V. M., Advances in the Casimir Effect (2009), Oxford University Press: Oxford University Press Oxford · Zbl 1215.81002
[24] Klimchitskaya, G. L.; Mohideen, U.; Mostepanenko, V. M., The Casimir force between real materials: Experiment and theory, Rev. Modern Phys., 81, 1827-1885 (2009), URL http://link.aps.org/doi/10.1103/RevModPhys.81.1827
[25] French, R. H.; Parsegian, V. A.; Podgornik, R.; Rajter, R. F.; Jagota, A.; Luo, J.; Asthagiri, D.; Chaudhury, M. K.; Y.-m. Chiang; Granick, S.; Kalinin, S.; Kardar, M.; Kjellander, R.; Langreth, D. C.; Lewis, J.; Lustig, S.; Wesolowski, D.; Wettlaufer, J. S.; Ching, W.-Y.; Finnis, M.; Houlihan, F.; von Lilienfeld, O. A.; van Oss, C. J.; Zemb, T., Long range interactions in nanoscale science, Rev. Modern Phys., 82, 1887-1944 (2010), URL http://link.aps.org/doi/10.1103/RevModPhys.82.1887
[26] (Sergey, D. O.; Sáez-Gómez, D.; Xambó-Descamps, S., Cosmology, Quantum Vacuum and Zeta Functions. Cosmology, Quantum Vacuum and Zeta Functions, Springer Proceedings in Physics, vol. 137 (2011), Springer: Springer Berlin), URL http://link.springer.com/book/10.1007
[27] Klimchitskaya, G. L.; Mohideen, U.; Mostepanenko, V. M., Control of the Casimir force using semiconductor test bodies, Internat. J. Modern Phys. B, 25, 171-230 (2011) · Zbl 1219.82195
[28] Rodriguez, A. W.; Capasso, F.; Johnson, S. G., The Casimir effect in microstructured geometries, Nat. Photon., 5, 211-221 (2011)
[29] Milton, K. A.; Abalo, E. K.; Parashar, P.; Pourtolami, N.; Brevik, I.; Ellingsen, S. A., Repulsive Casimir and Casimir - polder forces, J. Phys. A: Math. Gen., 45, 37, Article 374006 pp. (2012), URL http://stacks.iop.org/1751-8121/45/i=37/a=374006 · Zbl 1252.81119
[30] Brevik, I., Casimir theory of the relativistic composite string revisited, and a formally related problem in scalar QFT, J. Phys. A, 45, Article 374003 pp. (2012), URL http://stacks.iop.org/1751-8121/45/i=37/a=374003 · Zbl 1252.81116
[31] Bordag, M., Low temperature expansion in the Lifshitz formula, Adv. Math. Phys., 2014, Article 981586 pp. (2014), arXiv:1212.0213 · Zbl 1303.81190
[32] Buhmann, S. Y., Dispersion forces I: Macroscopic quantum electrodynamics and ground-state Casimir, Casimir-Polder and van der Waals forces, (Springer Tracts in Modern Physics, Vol. 247 (2012), Springer: Springer Heidelberg)
[33] Cugnon, J., The Casimir effect and the vacuum energy: Duality in the physical interpretation, Few-Body Syst., 53, 1-2, 181-188 (2012)
[34] Robert, A. D.J.; Vivekanand, V. G.; Alexandre, T., Many-body van der Waals interactions in molecules and condensed matter, J. Phys.: Condens. Matter, 26, 21, Article 213202 pp. (2014), URL http://stacks.iop.org/0953-8984/26/i=21/a=213202
[35] Rodriguez, A. W.; Hui, P.-C.; Woolf, D. P.; Johnson, S. G.; Lončar, M.; Capasso, F., Classical and fluctuation-induced electromagnetic interactions in micron-scale systems: designer bonding, antibonding, and Casimir forces, Ann. Phys., 527, 1-2, 45-80 (2015)
[36] Buhmann, S. Y.; Welsch, D.-G., Dispersion forces in macroscopic quantum electrodynamics, Prog. Quantum Electron., 31, 2, 51-130 (2007), URL http://www.sciencedirect.com/science/article/pii/S0079672707000249
[37] G.L. Klimchitskaya, V.M. Mostepanenko, Casimir and van der Waals forces: Advances and problems, in: Proceedings of Peter the Great St. Petersburg Polytechnic University N1, Vol. 517, 2015, pp. 41-65, http://dx.doi.org/10.5862/PROC.516.4,.
[38] Simpson, W. M.R.; Leonhardt, U., Forces of the Quantum Vacuum: An Introduction to Casimir Physics (2015), World Scientific: World Scientific Singapore
[39] Zhao, R.; Luo, Y.; Pendry, J. B., Transformation optics applied to van der Waals interactions, Sci. Bull., 61, 1, 59-67 (2016)
[40] Woods, L. M.; Dalvit, D. A.R.; Tkatchenko, A.; Rodriguez-Lopez, P.; Rodriguez, A. W.; Podgornik, R., Materials perspective on Casimir and van der Waals interactions, Rev. Modern Phys., 88, Article 045003 pp. (2016), URL http://link.aps.org/doi/10.1103/RevModPhys.88.045003
[41] Bimonte, G.; Emig, T.; Kardar, M.; Krüger, M., Nonequilibrium fluctuational quantum electrodynamics: Heat radiation, heat transfer, and force, Ann. Rev. Condens. Matter Phys., 8, 1, 119-143 (2017), arXiv:http://dx.doi.org/10.1146/annurev-conmatphys-031016-025203
[42] Woods, L. M.; Krüger, M.; Dodonov, V. V., Perspective on some recent and future developments in Casimir interactions, Appl. Sci. Switz., 11 (2021)
[43] Krech, M., Fluctuation-induced forces in critical fluids, J. Phys.: Condens. Matter, 11, R391-R412 (1999), URL https://iopscience.iop.org/article/10.1088/0953-8984/11/37/201/pdf
[44] Gambassi, A., The Casimir effect: From quantum to critical fluctuations, J. Phys.: Conf. Ser., 161, Article 012037 pp. (2009)
[45] Parisen Toldin, F.; Dietrich, S., Critical Casimir forces and adsorption profiles in the presence of a chemically structured substrate, J. Stat. Mech., 11, Article P11003 pp. (2010)
[46] Gambassi, A.; Dietrich, S., Critical Casimir forces steered by patterned substrates, Soft Matter, 7, 1247-1253 (2011)
[47] Dean, D. S., Non-equilibrium fluctuation-induced interactions, Phys. Scr., 86, Article 058502 pp. (2012), URL http://stacks.iop.org/1402-4896/86/i=5/a=058502 · Zbl 1267.82088
[48] Vasilyev, O. A., Monte Carlo simulation of critical Casimir forces, (Holovatch, Y., Order, Disorder and Criticality, Vol. 4 (2015), World Scientific: World Scientific Singapore), 55-110, arXiv:http://www.worldscientific.com/doi/pdf/10.1142/9789814632683_0002 URL http://www.worldscientific.com/doi/abs/10.1142/9789814632683_0002, (Chapter 2)
[49] Nguyen, V. D.; Dang, M. T.; Nguyen, T. A.; Schall, P., Critical Casimir forces for colloidal assembly, J. Phys.: Condens. Matter, 28, 4, Article 043001 pp. (2016), URL http://stacks.iop.org/0953-8984/28/i=4/a=043001
[50] Maciołek, A.; Dietrich, S., Collective behavior of colloids due to critical Casimir interactions, Rev. Modern Phys., 90, Article 045001 pp. (2018), URL https://link.aps.org/doi/10.1103/RevModPhys.90.045001
[51] Einstein, A., Über die gültigkeitsgrenze des satzes vom thermodynamischen gleichgewicht und über die möglichkeit einer neuen bestimmung der elementarquanta, Ann. Phys., 327, 3, 569-572 (1907) · JFM 38.0911.04
[52] Johnson, J. B., Thermal agitation of electricity in conductors, Phys. Rev., 32, 97-109 (1928), URL http://link.aps.org/doi/10.1103/PhysRev.32.97
[53] Nyquist, H., Thermal agitation of electric charge in conductors, Phys. Rev., 32, 110-113 (1928), URL http://link.aps.org/doi/10.1103/PhysRev.32.110
[54] Rodriguez, A. W.; Reid, M. T.H.; Johnson, S. G., Fluctuating-surface-current formulation of radiative heat transfer: Theory and applications, Phys. Rev. B, 88, Article 054305 pp. (2013), URL http://link.aps.org/doi/10.1103/PhysRevB.88.054305
[55] Gong, T.; Corrado, M. R.; Mahbub, A. R.; Shelden, C.; Munday, J. N., Recent progress in engineering the Casimir effect – applications to nanophotonics, nanomechanics, and chemistry, Nanophotonics, 10, 1, 523-536 (2021)
[56] Bimonte, G.; Emig, T.; Graham, N.; Kardar, M., Something can come of nothing: Surface approaches to quantum fluctuations and the Casimir force, Ann. Rev. Nucl. Part. Sci., 72, 1, 93-118 (2022), arXiv:https://doi.org/10.1146/annurev-nucl-111119-012402
[57] Moore, G. T., Quantum theory of the electromagnetic field in a variable length one dimensional cavity, J. Math. Phys., 11, 2679 (1970)
[58] Golestanian, R.; Kardar, M., Path-integral approach to the dynamic casimir effect with fluctuating boundaries, Phys. Rev. A, 58, 3, 1713-1722 (1998)
[59] Johansson, J. R.; Johansson, G.; Wilson, C. M.; Nori, F., Dynamical Casimir effect in a superconducting coplanar waveguide, Phys. Rev. Lett., 103, Article 147003 pp. (2009), URL http://link.aps.org/doi/10.1103/PhysRevLett.103.147003
[60] Faccio, D.; Carusotto, I., Dynamical Casimir effect in optically modulated cavities, Europhys. Lett., 96, 2, 24006 (2011), URL http://stacks.iop.org/0295-5075/96/i=2/a=24006
[61] Wilson, C.; Johansson, G.; Pourkabirian, A.; Johansson, J.; Duty, T.; Nori, F.; Delsing, P., Observation of the dynamical Casimir effect in a superconducting circuit, Nature, 479, 376-379 (2011)
[62] Nation, P. D.; Johansson, J. R.; Blencowe, M. P.; Nori, F., Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits, Rev. Modern Phys., 84, 1-24 (2012), URL http://link.aps.org/doi/10.1103/RevModPhys.84.1
[63] Lähteenmäki, P.; Paraoanu, G. S.; Hassel, J.; Hakonen, P. J., Dynamical Casimir effect in a josephson metamaterial, Proc. Natl. Acad. Sci. USA, 110, 11, 4234-4238 (2013), arXiv:http://www.pnas.org/content/110/11/4234.full.pdf+html URL http://www.pnas.org/content/110/11/4234.abstract
[64] Antezza, M.; Pitaevskii, L. P.; Stringari, S.; Svetovoy, V. B., Casimir-Lifshitz force out of thermal equilibrium, Phys. Rev. A, 77, Article 022901 pp. (2008), URL http://link.aps.org/doi/10.1103/PhysRevA.77.022901
[65] Bimonte, G., Scattering approach to Casimir forces and radiative heat transfer for nanostructured surfaces out of thermal equilibrium, Phys. Rev. A, 80, Article 042102 pp. (2009), URL http://link.aps.org/doi/10.1103/PhysRevA.80.042102
[66] Krüger, M.; Emig, T.; Kardar, M., Nonequilibrium electromagnetic fluctuations: Heat transfer and interactions, Phys. Rev. Lett., 106, 21, Article 210404 pp. (2011)
[67] Krüger, M.; Emig, T.; Bimonte, G.; Kardar, M., Non-equilibrium Casimir forces: Spheres and sphere-plate, Europhys. Lett., 95, 2, 21002 (2011), URL http://stacks.iop.org/0295-5075/95/i=2/a=21002
[68] Messina, R.; Antezza, M., Casimir-Lifshitz force out of thermal equilibrium and heat transfer between arbitrary bodies, Europhys. Lett., 95, 61002 (2011)
[69] Latella, I.; Ben-Abdallah, P.; Biehs, S.-A.; Antezza, M.; Messina, R., Radiative heat transfer and non-equilibrium Casimir-Lifshitz force in many-body systems with planar geometry, Phys. Rev. B, 95, Article 205404 pp. (2017), URL https://link.aps.org/doi/10.1103/PhysRevB.95.205404
[70] Iizuka, H.; Fan, S., Control of non-equilibrium Casimir force, Appl. Phys. Lett., 118, 14, Article 144001 pp. (2021), arXiv:https://doi.org/10.1063/5.0043100
[71] Li, H.; Kardar, M., Fluctuation-induced forces between rough surfaces, Phys. Rev. Lett., 67, 3275-3278 (1991), URL http://link.aps.org/doi/10.1103/PhysRevLett.67.3275
[72] Ajdari, A.; Peliti, L.; Prost, J., Fluctuation-induced long-range forces in liquid crystals, Phys. Rev. Lett., 66, 1481-1484 (1991), URL http://link.aps.org/doi/10.1103/PhysRevLett.66.1481
[73] Li, H.; Kardar, M., Fluctuation-induced forces between manifolds immersed in correlated fluids, Phys. Rev. A, 46, 6490-6500 (1992), URL http://link.aps.org/doi/10.1103/PhysRevA.46.6490
[74] Pincus, P. A.; Safran, S. A., Charge fluctuations and membrane attractions, Europhys. Lett., 42, 1, 103-108 (1998)
[75] Ambaum, M. H.P.; Auerswald, T.; Eaves, R.; Harrison, R. G., Enhanced attraction between drops carrying fluctuating charge distributions, Proc. R. Soc. A., 478, 2257, Article 20210714 pp. (2022), arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2021.0714 URL https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2021.0714
[76] Kirkwood, J. G.; Shumaker, J. B., Forces between protein molecules in solution arising from fluctuations in proton charge and configuration, Proc. Natl. Acad. Sci. USA, 38, 10, 863-871 (1952), URL https://www.pnas.org/content/38/10/863
[77] Podgornik, R., Electrostatic correlation forces between surfaces with surface specific ionic interactions, J. Chem. Phys., 91, 9, 5840-5849 (1989), URL http://scitation.aip.org/content/aip/journal/jcp/91/9/10.1063/1.457535
[78] Ha, B.-Y.; Liu, A. J., Counterion-mediated attraction between two like-charged rods, Phys. Rev. Lett., 79, 1289-1292 (1997), URL http://link.aps.org/doi/10.1103/PhysRevLett.79.1289
[79] Henle, M. L.; Pincus, P. A., Equilibrium bundle size of rodlike polyelectrolytes with counterion-induced attractive interactions, Phys. Rev. E, 71, Article 060801 pp. (2005), URL http://link.aps.org/doi/10.1103/PhysRevE.71.060801
[80] Naji, A.; Dean, D. S.; Sarabadani, J.; Horgan, R. R.; Podgornik, R., Fluctuation-induced interaction between randomly charged dielectrics, Phys. Rev. Lett., 104, Article 060601 pp. (2010), URL http://link.aps.org/doi/10.1103/PhysRevLett.104.060601
[81] Drosdoff, D.; Bondarev, I. V.; Widom, A.; Podgornik, R.; Woods, L. M., Charge-induced fluctuation forces in graphitic nanostructures, Phys. Rev. X, 6, Article 011004 pp. (2016), URL http://link.aps.org/doi/10.1103/PhysRevX.6.011004
[82] Goulian, M.; Bruinsma, R.; Pincus, P., Long-range forces in heterogeneous fluid membranes, Europhys. Lett., 22, 145-150 (1993), URL http://stacks.iop.org/0295-5075/22/i=2/a=012
[83] Bitbol, A.-F.; Dommersnes, P. G.; Fournier, J.-B., Fluctuations of the Casimir-like force between two membrane inclusions, Phys. Rev. E, 81, 5, Article 050903 pp. (2010)
[84] Lehle, H.; Oettel, M.; Dietrich, S., Effective forces between colloids at interfaces induced by capillary wavelike fluctuations, Europhys. Lett., 75, 1, 174-180 (2006)
[85] Oettel, M.; Dietrich, S., Colloidal interactions at fluid interfaces, Langmuir, 24, 4, 1425-1441 (2008)
[86] Bitbol, A.-F.; Ronia, K. S.; Fournier, J.-B., Universal amplitudes of the Casimir-like interactions between four types of rods in fluid membranes, Europhys. Lett., 96, 4, 40013 (2011), URL http://stacks.iop.org/0295-5075/96/i=4/a=40013
[87] Machta, B. B.; Veatch, S. L.; Sethna, J. P., Critical Casimir forces in cellular membranes, Phys. Rev. Lett., 109, Article 138101 pp. (2012), URL http://link.aps.org/doi/10.1103/PhysRevLett.109.138101
[88] Noruzifar, E.; Wagner, J.; Zandi, R., Scattering approach for fluctuation-induced interactions at fluid interfaces, Phys. Rev. E, 88, Article 042314 pp. (2013), URL http://link.aps.org/doi/10.1103/PhysRevE.88.042314
[89] Baumgart, T.; Hammond, A. T.; Sengupta, P.; Hess, S. T.; Holowka, D. A.; Baird, B. A.; Webb, W. W., Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles, Proc. Natl. Acad. Sci. USA, 104, 9, 3165-3170 (2007), arXiv:https://www.pnas.org/content/104/9/3165.full.pdf URL https://www.pnas.org/content/104/9/3165
[90] Veatch, S. L.; Cicuta, P.; Sengupta, P.; Honerkamp-Smith, A.; Holowka, D.; Baird, B., Critical fluctuations in plasma membrane vesicles, ACS Chem. Biol., 3, 287-293 (2008), arXiv:http://dx.doi.org/10.1021/cb800012x
[91] Drosdoff, D.; Widom, A., Fluid-mechanical and electrical fluctuation forces in colloids, Phys. Rev. E, 73, Article 051402 pp. (2006), URL http://link.aps.org/doi/10.1103/PhysRevE.73.051402
[92] Lu, B.-S.; Naji, A.; Podgornik, R., Pseudo-Casimir stresses and elasticity of a confined elastomer film, Soft Matter, 12, 4384-4396 (2016)
[93] Rodin, A., Many-impurity phonon Casimir effect in atomic chains, Phys. Rev. B, 100, Article 195403 pp. (2019), arXiv:http://arxiv.org/abs/1908.02006v1 URL https://link.aps.org/doi/10.1103/PhysRevB.100.195403
[94] Lee, G.; Rodin, A., Phonon Casimir effect in polyatomic systems, Phys. Rev. B, 103, Article 195434 pp. (2021), arXiv:2012.11082 URL https://link.aps.org/doi/10.1103/PhysRevB.103.195434
[95] Kirkpatrick, T. R.; Ortiz de Zárate, J. M.; Sengers, J. V., Giant Casimir effect in fluids in nonequilibrium steady states, Phys. Rev. Lett., 110, Article 235902 pp. (2013), URL http://link.aps.org/doi/10.1103/PhysRevLett.110.235902
[96] Kirkpatrick, T. R.; Ortiz de Zárate, J. M.; Sengers, J. V., Fluctuation-induced pressures in fluids in thermal nonequilibrium steady states, Phys. Rev. E, 89, Article 022145 pp. (2014), arXiv:1401.1339
[97] Kirkpatrick, T. R.; Ortiz de Zárate, J. M.; Sengers, J. V., Nonequilibrium Casimir-like forces in liquid mixtures, Phys. Rev. Lett., 115, Article 035901 pp. (2015), URL https://link.aps.org/doi/10.1103/PhysRevLett.115.035901
[98] Kirkpatrick, T. R.; Ortiz de Zárate, J. M.; Sengers, J. V., Nonequilibrium fluctuation-induced Casimir pressures in liquid mixtures, Phys. Rev. E, 93, Article 032117 pp. (2016), URL http://link.aps.org/doi/10.1103/PhysRevE.93.032117
[99] Kirkpatrick, T. R.; Ortiz de Zárate, J. M.; Sengers, J. V., Physical origin of nonequilibrium fluctuation-induced forces in fluids, Phys. Rev. E, 93, Article 012148 pp. (2016), URL http://link.aps.org/doi/10.1103/PhysRevE.93.012148
[100] Kirkpatrick, T. R.; Dorfman, J. R.; Sengers, J. V., Work, work fluctuations, and the work distribution in a thermal nonequilibrium steady state, Phys. Rev. E, 94, Article 052128 pp. (2016), URL http://link.aps.org/doi/10.1103/PhysRevE.94.052128
[101] Aminov, A.; Kafri, Y.; Kardar, M., Fluctuation-induced forces in nonequilibrium diffusive dynamics, Phys. Rev. Lett., 114, Article 230602 pp. (2015), URL http://link.aps.org/doi/10.1103/PhysRevLett.114.230602
[102] Rohwer, C. M.; Kardar, M.; Krüger, M., Transient Casimir forces from quenches in thermal and active matter, Phys. Rev. Lett., 118, Article 015702 pp. (2017), URL http://link.aps.org/doi/10.1103/PhysRevLett.118.015702
[103] Rohwer, C. M.; Solon, A.; Kardar, M.; Krüger, M., Nonequilibrium forces following quenches in active and thermal matter, Phys. Rev. E, 97, Article 032125 pp. (2018), URL https://link.aps.org/doi/10.1103/PhysRevE.97.032125
[104] Cattuto, C.; Brito, R.; Marconi, U. M.B.; Nori, F.; Soto, R., Fluctuation-induced Casimir forces in granular fluids, Phys. Rev. Lett., 96, 17, Article 178001 pp. (2006), URL http://link.aps.org/abstract/PRL/v96/e178001
[105] Ajdari, A.; Duplantier, B.; Hone, D.; Peliti, L.; Prost, J., Pseudo-Casimir effect in liquid crystals, J. Phys. II Fr., 2, 3, 487-501 (1992)
[106] Lyra, M. L.; Kardar, M.; Svaiter, N. F., Effects of surface enhancement on fluctuation-induced interactions, Phys. Rev. E, 47, 3456-3462 (1993), URL http://link.aps.org/doi/10.1103/PhysRevE.47.3456
[107] Ziherl, P.; Žumer, S., Fluctuations in confined liquid crystals above nematic-isotropic phase transition temperature, Phys. Rev. Lett., 78, 682-685 (1997), URL https://link.aps.org/doi/10.1103/PhysRevLett.78.682
[108] Ziherl, P.; Podgornik, R.; Žumer, S., Wetting-driven Casimir force in nematic liquid crystals, Phys. Rev. Lett., 82, 1189-1192 (1999)
[109] Haddadan, F. K.P.; Schlesener, F.; Dietrich, S., Liquid-crystalline Casimir effect in the presence of a patterned substrate, Phys. Rev. E, 70, 4, Article 041701 pp. (2004), URL http://link.aps.org/abstract/PRE/v70/e041701
[110] Karimi Pour Haddadan, F.; Schlesener, F.; Dietrich, S., Publisher’s note: Liquid-crystalline casimir effect in the presence of a patterned substrate [phys. Rev. e 70, 041701 (2004)], Phys. Rev. E, 71, 1, Article 019902 pp. (2005)
[111] Karimi Pour Haddadan, F.; Dietrich, S., Lateral and normal forces between patterned substrates induced by nematic fluctuations, Phys. Rev. E, 73, Article 051708 pp. (2006), URL https://link.aps.org/doi/10.1103/PhysRevE.73.051708
[112] Davoodianidalik, M.; Punzmann, H.; Kellay, H.; Xia, H.; Shats, M.; Francois, N., Fluctuation-induced interaction in turbulent flows, Phys. Rev. Lett., 128, Article 024503 pp. (2022), URL https://link.aps.org/doi/10.1103/PhysRevLett.128.024503
[113] Ray, D.; Reichhardt, C.; Reichhardt, C. J.O., Casimir effect in active matter systems, Phys. Rev. E, 90, Article 013019 pp. (2014), URL http://link.aps.org/doi/10.1103/PhysRevE.90.013019
[114] Kjeldbjerg, C. M.; Brady, J. F., Theory for the Casimir effect and the partitioning of active matter, Soft Matter, 17, 523-530 (2021)
[115] Tayar, A. M.; Caballaro, F.; Anderberg, T.; Saleh, O. A.; Marchetti, M. C.; Dogic, Z., Controlling liquid-liquid phase behavior with an active fluid (2022), arXiv:2208.12769 [cond-mat.soft]. arXiv:2208.12769
[116] Balda, A. B.; Argun, A.; Callegari, A.; Volpe, G., Playing with active matter (2022), arXiv:2209.04168 [cond-mat.soft]. arXiv:2209.04168
[117] Fava, G.; Gambassi, A.; Ginelli, F., Strong Casimir-like forces in flocking active matter (2022), arXiv:2211.02644 [cond-mat.soft]. arXiv:2211.02644
[118] Evans, R., Microscopic theories of simple fluids and their interfaces, (Charvolin, J.; Joanny, J.; Zinn-Justin, J., Liquids At Interfaces. Liquids At Interfaces, Les Houches Session, vol. XLVIII (1990), Elsevier: Elsevier Amsterdam)
[119] Krech, M.; Dietrich, S., Finite-size scaling for critical films, Phys. Rev. Lett., 66, 3, 345-348 (1991)
[120] Krech, M.; Dietrich, S., Erratum: Finite-size scaling for critical films [phys. Rev. Lett. 66, 345 (1991)], Phys. Rev. Lett., 67, 8, 1055 (1991)
[121] Krech, M.; Dietrich, S., Free energy and specific heat of critical films and surfaces, Phys. Rev. A, 46, 4, 1886-1921 (1992)
[122] Krech, M.; Dietrich, S., Specific heat of critical films, the casimir force, and wetting films near critical end points, Phys. Rev. A, 46, 4, 1922-1941 (1992)
[123] Barber, M. N., Finite-size scaling, (Domb, C.; Lebowitz, J. L., Phase Transitions and Critical Phenomena, Vol. 8 (1983), Academic: Academic London), 146-266, Chapter 2
[124] (Cardy, J. L., Finite-Size Scaling (1988), North-Holland: North-Holland Amsterdam)
[125] (Privman, V., Finite Size Scaling and Numerical Simulation of Statistical Systems (1990), World Scientific: World Scientific Singapore)
[126] Parry, A. O.; Evans, R., Influence of wetting on phase equilibria: A novel mechanism for critical-point shifts in films, Phys. Rev. Lett., 64, 4, 439-442 (1990)
[127] Fisher, M. E.; Barber, M. N., Scaling theory for finite-size effects in the critical region, Phys. Rev. Lett., 28, 1516-1519 (1972), URL http://link.aps.org/doi/10.1103/PhysRevLett.28.1516
[128] Binder, K., Critical behaviour at surfaces, (Domb, C.; Lebowitz, J. L., Phase Transitions and Critical Phenomena, Vol. 8 (1983), Academic: Academic London), 1-145, Chapter 1
[129] Diehl, H. W., Field-theoretical approach to critical behavior of surfaces, (Domb, C.; Lebowitz, J. L., Phase Transitions and Critical Phenomena, Vol. 10 (1986), Academic: Academic New York), 76-267
[130] Dietrich, S., Wetting phenomena, (Domb, C.; Lebowitz, J. L., Phase Transitions and Critical Phenomena, Vol. 12 (1988), Academic: Academic New York), 1-218
[131] Privman, V., Finite-size scaling theory, (Privman, V., Finite Size Scaling and Numerical Simulations of Statistical Systems (1990), World Scientific: World Scientific Singapore), 1-98
[132] Hertlein, C.; Helden, L.; Gambassi, A.; Dietrich, S.; Bechinger, C., Direct measurement of critical casimir forces, Nature, 451, 7175, 172-175 (2008), URL http://tinyurl.sfx.mpg.de/q0iw
[133] Paladugu, S.; Callegari, A.; Tuna, Y.; Barth, L.; Dietrich, S.; Gambassi, A.; Volpe, G., Nonadditivity of critical casimir forces, Nat. Commun., 7, 11403 (2016)
[134] Garcia, R.; Chan, M. H.W., Critical fluctuation-induced thinning of \({}^4He\) films near the superfluid transition, Phys. Rev. Lett., 83, 6, 1187-1190 (1999)
[135] Ganshin, A.; Scheidemantel, S.; Garcia, R.; Chan, M. H.W., Critical casimir force in \({}^4He\) films: Confirmation of finite-size scaling, Phys. Rev. Lett., 97, 7, Article 075301 pp. (2006), URL http://link.aps.org/abstract/PRL/v97/e075301
[136] Garcia, R.; Chan, M. H.W., Critical casimir effect near the \({}^3 He - {}^4He\) tricritical point, Phys. Rev. Lett., 88, 8, Article 086101 pp. (2002)
[137] Fukuto, M.; Yano, Y. F.; Pershan, P. S., Critical Casimir effect in three-dimensional Ising systems: Measurements on binary wetting films, Phys. Rev. Lett., 94, 13, Article 135702 pp. (2005), URL http://link.aps.org/abstract/PRL/v94/e135702
[138] Rafaï, S.; Bonn, D.; Meunier, J., Repulsive and attractive critical casimir forces, Physica A, 386, 2007, 31-35 (2007)
[139] Potenza, M. A.C.; Manca, A.; Veen, S. J.; Weber, B.; Mazzoni, S.; Schall, P.; Wegdam, G. H., Dynamics of colloidal aggregation in microgravity by critical Casimir forces, Europhys. Lett., 106, 6, 68005 (2014), URL http://stacks.iop.org/0295-5075/106/i=6/a=68005
[140] Martínez, I.; Devailly, C.; Petrosyan, A.; Ciliberto, S., Energy transfer between colloids via critical interactions, Entropy, 19, 77 (2017), arXiv:1701.05914 URL http://www.mdpi.com/1099-4300/19/2/77
[141] Nguyen, V. D.; Faber, S.; Hu, Z.; Wegdam, G. H.; Schall, P., Controlling colloidal phase transitions with critical Casimir forces, Nature Commun., 4, 1584 (2013), URL http://www.nature.com/ncomms/journal/v4/n3/abs/ncomms2597.html
[142] Schmidt, F.; Callegari, A.; Daddi-Moussa-Ider, A.; Munkhbat, B.; Verre, R.; Shegai, T.; Käll, M.; Löwen, H.; Gambassi, A.; Volpe, G., Tunable critical casimir forces counteract Casimir-Lifshitz attraction, Nat. Phys. (2022)
[143] Beysens, D.; Estève, D., Adsorption phenomena at the surface of silica spheres in a binary liquid mixture, Phys. Rev. Lett., 54, 19, 2123-2126 (1985)
[144] Soyka, F.; Zvyagolskaya, O.; Hertlein, C.; Helden, L.; Bechinger, C., Critical Casimir forces in colloidal suspensions on chemically patterned surfaces, Phys. Rev. Lett., 101, Article 208301 pp. (2007)
[145] Nellen, U.; Helden, L.; Bechinger, C., Tunability of critical casimir interactions by boundary conditions, Europhys. Lett., 88, 26001 (2009)
[146] Buzzaccaro, S.; Colombo, J.; Parola, A.; Piazza, R., Critical depletion, Phys. Rev. Lett., 105, Article 198301 pp. (2010), URL http://prl.aps.org/abstract/PRL/v105/i19/e198301
[147] Tröndle, M.; Zvyagolskaya, O.; Gambassi, A.; Vogt, D.; Harnau, L.; Bechinger, C.; Dietrich, S., Trapping colloids near chemical stripes via critical casimir forces, Mol. Phys., 109, 1169-1185 (2011)
[148] Zvyagolskaya, O.; Archer, A. J.; Bechinger, C., Criticality and phase separation in a two-dimensional binary colloidal fluid induced by the solvent critical behavior, Europhys. Lett., 96, 2, 28005 (2011), URL http://stacks.iop.org/0295-5075/96/i=2/a=28005
[149] Helden, L.; Knippenberg, T.; Tian, L.; Archambault, A.; Ginot, F.; Bechinger, C., Critical Casimir interactions of colloids in micellar critical solutions, Soft Matter, 17, 2737-2741 (2021)
[150] Rudnick, J.; Zandi, R.; Shackell, A.; Abraham, D., Boundary conditions and the critical Casimir force on an Ising model film: Exact results in one and two dimensions, Phys. Rev. E, 82, Article 041118 pp. (2010)
[151] Fisher, M. E., Magnetism in one-dimensional systems — the Heisenberg model for infinite spin, Amer. J. Phys., 32, 5, 343-346 (1964), URL http://scitation.aip.org/content/aapt/journal/ajp/32/5/10.1119/1.1970340
[152] Dantchev, D.; Rudnick, J., Manipulation and amplification of the Casimir force through surface fields using helicity, Phys. Rev. E, 95, Article 042120 pp. (2017), URL https://link.aps.org/doi/10.1103/PhysRevE.95.042120
[153] Evans, R.; Stecki, J., Solvation force in two-dimensional Ising strips, Phys. Rev. B, 49, 13, 8842-8851 (1994)
[154] Maciòłek, A.; Ciach, A.; Drzewiński, A., Crossover between ordinary and normal transitions in two dimensional critical Ising films, Phys. Rev. E, 60, 3, 2887-2896 (1999), URL http://link.aps.org/doi/10.1103/PhysRevE.60.2887
[155] Indekeu, J. O.; Nightingale, M. P.; Wang, W. V., Finite-size interaction amplitudes and their universality: Exact, mean-field, and renormalization-group results, Phys. Rev. B, 34, 330-342 (1986), URL http://link.aps.org/doi/10.1103/PhysRevB.34.330
[156] Drzewiński, A.; Maciołek, A.; Evans, R., Influence of capillary condensation on the near-critical solvation force, Phys. Rev. Lett., 85, 3079-3082 (2000), URL http://link.aps.org/doi/10.1103/PhysRevLett.85.3079
[157] Drzewiński, A.; Maciołek, A.; Ciach, A., Effect of bulk magnetic field on critical ising films, Phys. Rev. E, 61, 5009-5018 (2000), URL http://link.aps.org/doi/10.1103/PhysRevE.61.5009
[158] Dantchev, D.; Krech, M., Critical Casimir force and its fluctuations in lattice spin models: Exact and Monte Carlo results, Phys. Rev. E, 69, 4, Article 046119 pp. (2004), URL http://link.aps.org/abstract/PRE/v69/e046119
[159] Maciòłek, A.; Drzewiński, A.; Bryk, P., Solvation force for long-ranged wall-fluid potentials, J. Chem. Phys., 120, 4, 1921-1934 (2004)
[160] Abraham, D. B.; Essler, F. H.L.; Maciołek, A., Effective forces induced by a fluctuating interface: Exact results, Phys. Rev. Lett., 98, Article 170602 pp. (2007), URL https://link.aps.org/doi/10.1103/PhysRevLett.98.170602
[161] Nowakowski, P.; Napiórkowski, M., Scaling of solvation force in two-dimensional Ising strips, Phys. Rev. E, 78, 6, Article 060602 pp. (2008), URL http://link.aps.org/abstract/PRE/v78/e060602
[162] Nowakowski, P.; Napiórkowski, M., Properties of the solvation force of a two-dimensional Ising strip in scaling regimes, J. Phys. A, 42, 475005 (2009), URL http://tinyurl.sfx.mpg.de/qt84 · Zbl 1183.82016
[163] Abraham, D. B.; Maciołek, A., Casimir interactions in Ising strips with boundary fields: Exact results, Phys. Rev. Lett., 105, 5, Article 055701 pp. (2010)
[164] Izmailian, N. S., Universal amplitude ratios for scaling corrections on Ising strips, Phys. Rev. E, 84, Article 051109 pp. (2011), URL http://link.aps.org/doi/10.1103/PhysRevE.84.051109
[165] Hucht, A.; Grüneberg, D.; Schmidt, F. M., Aspect-ratio dependence of thermodynamic Casimir forces, Phys. Rev. E, 83, 5, Article 051101 pp. (2011)
[166] Drzewiński, A.; Maciołek, A.; Barasiński, A., Solvation forces in Ising films with long-range boundary fields: density-matrix renormalization-group study, Mol. Phys., 109, 7-10, 1133-1141 (2011), arXiv:10.1080/00268976.2010.549092
[167] Borjan, Z., Crossover behaviors in the Ising strips with changeable boundary conditions: Exact variational results, Europhys. Lett., 99, 5, 56004 (2012), URL http://stacks.iop.org/0295-5075/99/i=5/a=56004
[168] Wu, X.; Izmailian, N.; Guo, W., Finite-size behavior of the critical Ising model on a rectangle with free boundaries, Phys. Rev. E, 86, Article 041149 pp. (2012), URL http://link.aps.org/doi/10.1103/PhysRevE.86.041149
[169] Abraham, D. B.; Maciòłek, A., Surface states and the Casimir interaction in the Ising model, Europhys. Lett., 101, 2, 20006 (2013)
[170] Zubaszewska, M.; Maciołek, A.; Drzewiński, A., Critical Casimir forces along the isofields, Phys. Rev. E, 88, Article 052129 pp. (2013), URL http://link.aps.org/doi/10.1103/PhysRevE.88.052129
[171] Vasilyev, O. A.; Eisenriegler, E.; Dietrich, S., Critical Casimir torques and forces acting on needles in two spatial dimensions, Phys. Rev. E, 88, Article 012137 pp. (2013), URL http://link.aps.org/doi/10.1103/PhysRevE.88.012137
[172] Hobrecht, H.; Hucht, A., Direct simulation of critical Casimir forces, Europhys. Lett., 106, 56005 (2014), arXiv:1405.4088
[173] Wu, X.; Izmailyan, N., Critical two-dimensional Ising model with free, fixed ferromagnetic, fixed antiferromagnetic, and double antiferromagnetic boundaries, Phys. Rev. E, 91, Article 012102 pp. (2015), URL http://link.aps.org/doi/10.1103/PhysRevE.91.012102
[174] Hobrecht, H.; Hucht, A., Many-body critical Casimir interactions in colloidal suspensions, Phys. Rev. E, 92, Article 042315 pp. (2015), URL http://link.aps.org/doi/10.1103/PhysRevE.92.042315
[175] Dubail, J.; Santachiara, R.; Emig, T., Critical Casimir force between inhomogeneous boundaries, Europhys. Lett., 112, 6, 66004 (2015), URL http://stacks.iop.org/0295-5075/112/i=6/a=66004
[176] Nowakowski, P.; Maciołek, A.; Dietrich, S., Critical Casimir forces between defects in the 2d Ising model, J. Phys. A, 49, 48, Article 485001 pp. (2016), URL http://stacks.iop.org/1751-8121/49/i=48/a=485001 · Zbl 1355.82009
[177] Nowakowski, P.; Napiórkowski, M., Lateral critical Casimir force in 2d Ising strip with inhomogeneous walls, J. Chem. Phys., 141, 6, Article 064704 pp. (2014), arXiv:10.1063/1.4892343
[178] Hucht, A., The square lattice Ising model on the rectangle I: finite systems, J. Phys. A, 50, 6, Article 065201 pp. (2017), URL http://stacks.iop.org/1751-8121/50/i=6/a=065201 · Zbl 1357.81154
[179] Hucht, A., The square lattice Ising model on the rectangle II: finite-size scaling limit, J. Phys. A, 50, 26, Article 265205 pp. (2017), URL http://stacks.iop.org/1751-8121/50/i=26/a=265205 · Zbl 1369.82005
[180] Hobrecht, H.; Hucht, A., Critical Casimir force scaling functions of the two-dimensional Ising model at finite aspect ratios, J. Stat. Mech. Theory Exp., 2017, Article 024002 pp. (2017), URL http://stacks.iop.org/1742-5468/2017/i=2/a=024002 · Zbl 1457.82098
[181] Mostovoy, S. D.; Pavlovsky, O. V., Critical Casimir effects in 2d Ising model with curved defect lines, Phys. Lett. A, 382, 5, 276-282 (2018), URL http://www.sciencedirect.com/science/article/pii/S0375960117311581 · Zbl 1387.82039
[182] Mostovoy, S. D.; Pavlovsky, O. V., Particle-like behavior of defects near a defect line in 2d Ising model: Defect-antidefect pair production and interaction, Int. J. Mod. Phys. B, 33, Article 1950117 pp. (2019), arXiv:https://doi.org/10.1142/S0217979219501170
[183] Marolt, K.; Zimmermann, M.; Roth, R., Microphase separation in a two-dimensional colloidal system with competing attractive critical Casimir and repulsive magnetic dipole interactions, Phys. Rev. E, 100, Article 052602 pp. (2019), URL https://link.aps.org/doi/10.1103/PhysRevE.100.052602
[184] Burkhardt, T. W.; Eisenriegler, E., Two-dimensional critical systems with mixed boundary conditions: Exact Ising results from conformal invariance and boundary-operator expansions, Phys. Rev. E, 103, Article 012120 pp. (2021), URL https://link.aps.org/doi/10.1103/PhysRevE.103.012120
[185] Squarcini, A.; Maciołek, A.; Eisenriegler, E.; Dietrich, S., Critical Casimir interaction between colloidal Janus-type particles in two spatial dimensions, J. Stat. Mech. Theory Exp., 2020, 4, Article 043208 pp. (2020) · Zbl 1456.81416
[186] Dohm, V.; Wessel, S., Exact critical Casimir amplitude of anisotropic systems from conformal field theory and self-similarity of finite-size scaling functions in \(d \geq 2\) dimensions, Phys. Rev. Lett., 126, Article 060601 pp. (2021), URL https://link.aps.org/doi/10.1103/PhysRevLett.126.060601
[187] Dohm, V.; Wessel, S.; Kalthoff, B.; Selke, W., Multiparameter universality and conformal field theory for anisotropic confined systems: test by Monte Carlo simulations, J. Phys. A, 54, 23, Article 23LT01 pp. (2021) · Zbl 1519.82156
[188] Borjan, Z.; Upton, P. J., Order-parameter profiles and Casimir amplitudes in critical slabs, Phys. Rev. Lett., 81, 22, 4911-4914 (1998)
[189] Vasilyev, O.; Gambassi, A.; Maciòłek, A.; Dietrich, S., Monte Carlo simulation results for critical Casimir forces, Europhys. Lett., 80, 60009 (2007)
[190] Borjan, Z.; Upton, P. J., Off-critical Casimir effect in ising slabs with symmetric boundary conditions in d=3, Phys. Rev. Lett., 101, 12, Article 125702 pp. (2008), URL http://link.aps.org/abstract/PRL/v101/e125702
[191] Vasilyev, O.; Gambassi, A.; Maciòłek, A.; Dietrich, S., Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations, Phys. Rev. E, 79, Article 041142 pp. (2009), URL http://link.aps.org/abstract/PRE/v79/e041142
[192] Gambassi, A.; Maciołek, A.; Hertlein, C.; Nellen, U.; Helden, L.; Bechinger, C.; Dietrich, S., Critical casimir effect in classical binary liquid mixtures, Phys. Rev. E, 80, 6, Article 061143 pp. (2009)
[193] Mohry, T. F.; Maciołek, A.; Dietrich, S., Crossover of critical casimir forces between different surface universality classes, Phys. Rev. E, 81, 6, Article 061117 pp. (2010)
[194] Hasenbusch, H., Thermodynamic casimir effect for films in the 3d Ising universality class: Symmetry breaking boundary conditions, Phys. Rev. B, 82, Article 104425 pp. (2010)
[195] Hasenbusch, M., Thermodynamic casimir force: A Monte Carlo study of the crossover between the ordinary and the normal surface universality class, Phys. Rev. B, 83, 13, Article 134425 pp. (2011)
[196] Vasilyev, O.; Maciòłek, A.; Dietrich, S., Critical casimir forces for ising films with variable boundary fields, Phys. Rev. E, 84, Article 041605 pp. (2011), URL http://de.arxiv.org/abs/1106.5140
[197] Hasenbusch, M., Thermodynamic casimir effect: Universality and corrections to scaling, Phys. Rev. B, 85, Article 174421 pp. (2012), URL http://link.aps.org/doi/10.1103/PhysRevB.85.174421
[198] Okamoto, R.; Onuki, A., Casimir amplitudes and capillary condensation of near-critical fluids between parallel plates: Renormalized local functional theory, J. Chem. Phys., 136, 11, Article 114704 pp. (2012), URL http://link.aip.org/link/?JCP/136/114704/1
[199] Hasenbusch, M., Thermodynamic Casimir forces between a sphere and a plate: Monte Carlo simulation of a spin model, Phys. Rev. E, 87, Article 022130 pp. (2013), URL http://link.aps.org/doi/10.1103/PhysRevE.87.022130
[200] Upton, P. J.; Borjan, Z., Off-critical Casimir effect in ising slabs with antisymmetric boundary conditions in \(d = 3\), Phys. Rev. B, 88, Article 155418 pp. (2013), URL http://link.aps.org/doi/10.1103/PhysRevB.88.155418
[201] Parisen Toldin, F.; Tröndle, M.; Dietrich, S., Critical Casimir forces between homogeneous and chemically striped surfaces, Phys. Rev. E, 88, Article 052110 pp. (2013), URL http://link.aps.org/doi/10.1103/PhysRevE.88.052110
[202] Vasilyev, O. A.; Dietrich, S., Critical Casimir forces for films with bulk ordering fields, Europhys. Lett., 104, 6, 60002 (2013), URL http://stacks.iop.org/0295-5075/104/i=6/a=60002
[203] Vasilyev, O. A., Critical Casimir interactions between spherical particles in the presence of bulk ordering fields, Phys. Rev. E, 90, Article 012138 pp. (2014), URL http://link.aps.org/doi/10.1103/PhysRevE.90.012138
[204] Hasenbusch, M., Thermodynamic Casimir effect in films: The exchange cluster algorithm, Phys. Rev. E, 91, Article 022110 pp. (2015), URL http://link.aps.org/doi/10.1103/PhysRevE.91.022110
[205] Hasenbusch, M., Spin models in three dimensions: Adaptive lattice spacing, Phys. Rev. E, 91, Article 033304 pp. (2015), URL http://link.aps.org/doi/10.1103/PhysRevE.91.033304
[206] Maciołek, A.; Vasilyev, O.; Dotsenko, V.; Dietrich, S., Critical Casimir forces in the presence of random surface fields, Phys. Rev. E, 91, Article 032408 pp. (2015), URL http://link.aps.org/doi/10.1103/PhysRevE.91.032408
[207] Borjan, Z., Crossover aspects in Ising strips under the influence of variable surface fields and a grain boundary, Phys. Rev. E, 91, Article 032121 pp. (2015), URL http://link.aps.org/doi/10.1103/PhysRevE.91.032121
[208] Tröndle, M.; Harnau, L.; Dietrich, S., Critical Casimir forces between planar and crenellated surfaces, J. Phys.: Condens. Matter, 27, 21, Article 214006 pp. (2015), URL http://stacks.iop.org/0953-8984/27/i=21/a=214006
[209] Parisen Toldin, F., Critical Casimir force in the presence of random local adsorption preference, Phys. Rev. E, 91, Article 032105 pp. (2015), URL http://link.aps.org/doi/10.1103/PhysRevE.91.032105
[210] Borjan, Z., Critical Casimir effect in the Ising strips with standard normal and ordinary boundary conditions and the grain boundary, Physica A, 329-341 (2016), URL http://www.sciencedirect.com/science/article/pii/S0378437116301169 · Zbl 1400.82092
[211] Vasilyev, O. A., Critical Casimir interactions and percolation: The quantitative description of critical fluctuations, Phys. Rev. E, 98, Article 062138 pp. (2018), URL https://link.aps.org/doi/10.1103/PhysRevE.98.062138
[212] Puosi, F.; Cardozo, D. L.; Ciliberto, S.; Holdsworth, P. C.W., Direct calculation of the critical Casimir force in a binary fluid, Phys. Rev. E, 94, Article 040102 pp. (2016), URL http://link.aps.org/doi/10.1103/PhysRevE.94.040102
[213] Squarcini, A.; Romero-Enrique, J. M.; Parry, A. O., Casimir contribution to the interfacial Hamiltonian for 3d wetting, Phys. Rev. Lett., 128, Article 195701 pp. (2022), arXiv:2204.12353. URL https://link.aps.org/doi/10.1103/PhysRevLett.128.195701
[214] Dantchev, D.; Krech, M.; Dietrich, S., Thermodynamic Casimir force in models of \({}^4He\) films, Phys. Rev. Lett., 95, 25, Article 259701 pp. (2005), URL http://link.aps.org/abstract/PRL/v95/e259701
[215] Bergknoff, J.; Dantchev, D.; Rudnick, J., Casimir force in the rotor model with twisted boundary conditions, Phys. Rev. E, 84, Article 041134 pp. (2011), URL http://link.aps.org/doi/10.1103/PhysRevE.84.041134
[216] Dantchev, D., Finite-size scaling casimir force function: Exact spherical-model results, Phys. Rev. E, 53, 3, 2104-2109 (1996)
[217] Dantchev, D. M., Exact three-dimensional Casimir force amplitude, \(C\) function, and Binder’s cumulant ratio: Spherical model results, Phys. Rev. E, 58, 2, 1455-1462 (1998)
[218] Dantchev, D.; Diehl, H. W.; Grüneberg, D., Excess free energy and Casimir forces in systems with long-range interactions of van der Waals type: General considerations and exact spherical-model results, Phys. Rev. E, 73, 1, Article 016131 pp. (2006), URL http://link.aps.org/abstract/PRE/v73/e016131
[219] Chamati, H.; Dantchev, D. M., Critical Casimir forces for \(O ( n )\) systems with long-range interaction in the spherical limit, Phys. Rev. E, 70, 6, Article 066106 pp. (2004), URL http://link.aps.org/abstract/PRE/v70/e066106
[220] Chen, X. S.; Dohm, V., Nonuniversal finite-size scaling in anisotropic systems, Phys. Rev. E, 70, Article 056136 pp. (2004), URL https://link.aps.org/doi/10.1103/PhysRevE.70.056136
[221] Dantchev, D.; Grüneberg, D., Casimir force in \(O ( n )\) systems with a diffuse interface, Phys. Rev. E, 79, 4, Article 041103 pp. (2009), URL http://link.aps.org/abstract/PRE/v79/e041103
[222] Diehl, H. W.; Grüneberg, D.; Hasenbusch, M.; Hucht, A.; Rutkevich, S. B.; Schmidt, F. M., Exact thermodynamic Casimir forces for an interacting three-dimensional model system in film geometry with free surfaces, Europhys. Lett., 100, 1, 10004 (2012), URL http://stacks.iop.org/0295-5075/100/i=1/a=10004
[223] Diehl, H. W.; Rutkevich, S. B., The \(O\)(n) \( \phi^4\) model with free surfaces in the large-\(n\) limit: Some exact results for boundary critical behaviour, fluctuation-induced forces and distant-wall corrections, J. Phys. A: Math. Theor., 47, Article 145004 pp. (2014), arXiv:1401.1357 · Zbl 1291.82043
[224] Dantchev, D.; Bergknoff, J.; Rudnick, J., Casimir force in the \(O ( n \to \infty )\) model with free boundary conditions, Phys. Rev. E, 89, Article 042116 pp. (2014), URL http://link.aps.org/doi/10.1103/PhysRevE.89.042116
[225] Diehl, H. W.; Grüneberg, D.; Hasenbusch, M.; Hucht, A.; Rutkevich, S. B.; Schmidt, F. M., Large-\(n\) approach to thermodynamic Casimir effects in slabs with free surfaces, Phys. Rev. E, 89, Article 062123 pp. (2014), URL http://link.aps.org/doi/10.1103/PhysRevE.89.062123
[226] Dantchev, D. M., Exact results for the Casimir force of a three-dimensional model of relativistic Bose gas in a film geometry, J. Stat. Mech. Theory Exp., Article 063103 pp. (2020) · Zbl 1456.81414
[227] Davies, E. B., The thermodynamic limit for an imperfect Boson gas, Comm. Math. Phys., 28, 1, 69-86 (1972)
[228] Martin, P. A.; Zagrebnov, V. A., The Casimir effect for the Bose-gas in slabs, Europhys. Lett., 73, 15 (2006), URL https://iopscience.iop.org/article/10.1209/epl/i2005-10357-x/pdf
[229] Gambassi, A.; Dietrich, S., Relation between the thermodynamic Casimir effect in Bose-gas slabs and critical Casimir forces, Europhys. Lett., 74, 754 (2006), URL https://iopscience.iop.org/article/10.1209/epl/i2006-10021-1/pdf
[230] Biswas, S., Bose-Einstein condensation and the casimir effect for an ideal bose gas confined between two slabs, J. Phys. A.: Math. Theor., 40, 9969 (2007) · Zbl 1121.82006
[231] Biswas, S., Bose-Einstein condensation and casimir effect of trapped ideal bose gas in between two slabs, Eur. Phys. J. D, 42, 109 (2007)
[232] Biswas, S.; Bhattacharjee, J. K.; Majumder, D.; Saha, K.; Chakravarty, N., Casimir force on an interacting bose-Einstein condensate, J. Phys. B: At. Mol. Opt. Phys., 43, Article 085305 pp. (2010)
[233] Biswas, S.; Bhattacharjee, J. K.; Samanta, H. S.; Bhattacharyya, S.; Hu, B., The critical casimir force in the superfluid phase: effect of fluctuations, New J. Phys., 12, Article 063039 pp. (2010)
[234] Napiórkowski, M.; Jakubczyk, P.; Nowak, K., The imperfect bose gas in d dimensions: critical behavior and casimir forces, J. Stat. Mech. Theory Exp., P06015 (2013), arXiv:1305.4643 · Zbl 1456.82066
[235] Biswas, S.; Bhattacharyya, S.; Agarwal, A., Casimir effect for a Bose-Einstein condensate inside a cylindrical tube, J. Phys. B: At. Mol. Opt. Phys., 49, 1, Article 015301 pp. (2016), URL http://stacks.iop.org/0953-4075/49/i=1/a=015301
[236] Marino, J.; Recati, A.; Carusotto, I., Casimir forces and quantum friction from Ginzburg radiation in atomic Bose-Einstein condensates, Phys. Rev. Lett., 118, Article 045301 pp. (2017), URL http://link.aps.org/doi/10.1103/PhysRevLett.118.045301
[237] Van Thu, N.; Theu, L. T., Casimir force of two-component Bose-Einstein condensates confined by a parallel plate geometry, J. Stat. Phys., 168, 1-10 (2017), arXiv:1608.07649 · Zbl 1372.81142
[238] Diehl, H. W.; Rutkevich, S. B., Fluctuation-induced forces in confined ideal and imperfect Bose gases, Phys. Rev. E, 95, Article 062112 pp. (2017), URL https://link.aps.org/doi/10.1103/PhysRevE.95.062112
[239] Dehkharghani, A. S.; Volosniev, A. G.; Zinner, N. T., Coalescence of two impurities in a trapped one-dimensional Bose gas, Phys. Rev. Lett., 121, Article 080405 pp. (2018), URL https://link.aps.org/doi/10.1103/PhysRevLett.121.080405
[240] Reichert, B.; Petković, A.; Ristivojevic, Z., Field-theoretical approach to the Casimir-like interaction in a one-dimensional Bose gas, Phys. Rev. B, 99, Article 205414 pp. (2019), URL https://link.aps.org/doi/10.1103/PhysRevB.99.205414
[241] Faruk, M. M.; Biswas, S., Repulsive Casimir force in Bose-Einstein condensate, J. Stat. Mech. Theory Exp., 2018, 4, Article 043401 pp. (2018), URL http://stacks.iop.org/1742-5468/2018/i=4/a=043401 · Zbl 1459.82293
[242] Reichert, B.; Ristivojevic, Z.; Petkovic, A., The Casimir-like effect in a one-dimensional Bose gas, New J. Phys., 21, Article 053024 pp. (2019), URL https://doi.org/10.1088/1367-2630/ab1b8e
[243] Łebek, M.; Jakubczyk, P., Dimensional crossovers and Casimir forces for the Bose gas in anisotropic optical lattices, Phys. Rev. A, 102, Article 013324 pp. (2020), URL https://link.aps.org/doi/10.1103/PhysRevA.102.013324
[244] Van Thu, N., The Casimir effect in a dilute Bose gas in canonical ensemble within improved Hartree-Fock approximation, J. Low Temp. Phys., 204, 12-23 (2021)
[245] Thu, N. V.; Theu, L. T.; Hai, D. T., Casimir and surface tension forces on a single interacting Bose-Einstein condensate in canonical ensemble, J. Exp. Theor. Phys., 130, 3, 321-326 (2020), URL https://doi.org/10.1134/S1063776120020168
[246] Thu, N. V.; Song, P. T., Casimir effect in a weakly interacting Bose gas confined by a parallel plate geometry in improved Hartree-Fock approximation, Physica A, 540, Article 123018 pp. (2020), URL http://www.sciencedirect.com/science/article/pii/S0378437119317042 · Zbl 1527.82050
[247] Napiórkowski, M.; Piasecki, J.; Turner, J. W., Non-universal Casimir forces at approach to Bose-Einstein condensation of an ideal gas: Effect of Dirichlet boundary conditions, J. Stat. Phys., 181, 944-951 (2020), URL https://doi.org/10.1007/s10955-020-02613-0 · Zbl 1460.81096
[248] Song, P. T.; Van Thu, N., The Casimir effect in a weakly interacting Bose gas, J. Low Temp. Phys., 202, 160-174 (2020)
[249] Łebek, M.; Jakubczyk, P., Thermodynamic Casimir forces in strongly anisotropic systems within the \(n \to \infty\) class, SciPost Phys. Core, 4, 16 (2021), URL https://scipost.org/10.21468/SciPostPhysCore.4.2.016
[250] Song, P. T., On the Bogoliubov theory: Casimir effect in a single weakly interacting Bose gas at zero-temperature with Neumann boundary condition (2021), arXiv:2006.11596 [cond-mat.quant-gas]. arXiv:2006.11596v1
[251] Aydiner, E., Repulsive Casimir force of the free and harmonically trapped Bose gas in the Bose-Einstein condensate phase, Ann. Physics, 532, 8, Article 2000178 pp. (2020), arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.202000178. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.202000178 · Zbl 07764339
[252] Bhuiyan, G. M., Bose condensation and the Casimir effects of an imperfect Bose gas in a d-dimensional configuration space, J. Phys.: Conf. Ser., 1718, 1, Article 012006 pp. (2021)
[253] Napiórkowski, M.; Jakubczyk, P., Casimir forces for the ideal Bose gas in anisotropic optical lattices: the effect of alternating sign upon varying dimensionality, J. Stat. Mech., Article 083201 pp. (2021), arXiv:2103.13502. URL https://doi.org/10.1088/1742-5468/ac0c73 · Zbl 1539.81112
[254] Song, P. T., The repulsive Casimir-type forces of a weakly interacting Bose-Einstein condensate gas, J. Low Temp. Phys., 206, 1, 16-31 (2022)
[255] Napiórkowski, M.; Pruszczyk, M., Variance of the Casimir force in an ideal Bose gas, J. Stat. Mech. Theory Exp., 2022, 7, Article 073104 pp. (2022), arXiv:2205.06797 · Zbl 1539.81113
[256] Pruszczyk, M.; Jakubczyk, P., Effective binding potential from Casimir interactions: the case of the Bose gas (2022), arXiv:2211.06035 [cond-mat.stat-mech]. arXiv:2211.06035
[257] Kastening, B.; Dohm, V., Finite-size effects in film geometry with nonperiodic boundary conditions: Gaussian model and renormalization-group theory at fixed dimension, Phys. Rev. E, 81, 6, Article 061106 pp. (2010)
[258] Gross, M., Dynamics and steady states of a tracer particle in a confined critical fluid, J. Stat. Mech., Article 063209 pp. (2021), arXiv:2101.02072. URL https://doi.org/10.1088/1742-5468/abffce · Zbl 1539.82247
[259] Gross, M.; Gambassi, A.; Dietrich, S., Fluctuations of the critical Casimir force, Phys. Rev. E, 103, Article 062118 pp. (2021), URL https://link.aps.org/doi/10.1103/PhysRevE.103.062118
[260] Parry, A. O.; Evans, R., Novel phase behavior of a confined fluid or ising magnet, Physica A, 181, 250 (1992)
[261] Krech, M., Casimir forces in binary liquid mixtures, Phys. Rev. E, 56, 2, 1642-1659 (1997)
[262] Gambassi, A.; Dietrich, S., Critical dynamics in thin films, J. Stat. Phys., 123, 929-1005 (2006) · Zbl 1103.82017
[263] Sprenger, M.; Schlesener, F.; Dietrich, S., Forces between chemically structured substrates mediated by critical fluids, J. Chem. Phys., 124, 13, Article 134703 pp. (2006), URL http://link.aip.org/link/?JCP/124/134703/1
[264] Dantchev, D.; Schlesener, F.; Dietrich, S., Interplay of critical Casimir and dispersion forces, Phys. Rev. E, 76, 1, Article 011121 pp. (2007), URL http://link.aps.org/abstract/PRE/v76/e011121
[265] Ciach, A.; Maciołek, A., Distribution of ions near a charged selective surface in critical binary solvents, Phys. Rev. E, 81, Article 041127 pp. (2010), URL http://link.aps.org/doi/10.1103/PhysRevE.81.041127
[266] Bier, M.; Gambassi, A.; Oettel, M.; Dietrich, S., Electrostatic interactions in critical solvents, Europhys. Lett., 95, 6, 60001 (2011)
[267] Pousaneh, F.; Ciacha, A.; Maciółek, A., Effect of ions on confined near-critical binary aqueous mixture, Soft Matter, 8, 7567-7581 (2012)
[268] Valchev, G.; Dantchev, D.; Kostadinov, K., On the forces between micro and nano objects and a gripper, Int. J. Intell. Mech. Robot. (IJIMR), 2, Article 152012 pp. (2012)
[269] Dantchev, D.; Valchev, G., Surface integration approach: A new technique for evaluating geometry dependent forces between objects of various geometry and a plate, J. Colloid Interface Sci., 372, 1, 148-163 (2012), URL http://www.sciencedirect.com/science/article/pii/S0021979711015293
[270] Labbé-Laurent, M.; Tröndle, M.; Harnau, L.; Dietrich, S., Alignment of cylindrical colloids near chemically patterned substrates induced by critical Casimir torques, Soft Matter, 10, 2270-2291 (2014), arXiv:1311.3814
[271] Pousaneh, F.; Ciach, A.; Maciołek, A., How ions in solution can change the sign of the critical Casimir potential, Soft Matter, 10, 470-483 (2014)
[272] Valchev, G.; Dantchev, D., Critical and near-critical phase behavior and interplay between the thermodynamic Casimir and van der Waals forces in a confined nonpolar fluid medium with competing surface and substrate potentials, Phys. Rev. E, 92, Article 012119 pp. (2015), URL http://link.aps.org/doi/10.1103/PhysRevE.92.012119
[273] Labbé-Laurent, M.; Dietrich, S., Critical Casimir interactions between Janus particles, Soft Matter, 12, 6621-6648 (2016)
[274] Dantchev, D. M.; Vassilev, V. M.; Djondjorov, P. A., Exact results for the behavior of the thermodynamic Casimir force in a model with a strong adsorption, J. Stat. Mech. Theory Exp., Article 093209 pp. (2016), URL http://stacks.iop.org/1742-5468/2016/i=9/a=093209 · Zbl 1457.82137
[275] Gross, M.; Vasilyev, O.; Gambassi, A.; Dietrich, S., Critical adsorption and critical Casimir forces in the canonical ensemble, Phys. Rev. E, 94, Article 022103 pp. (2016), URL http://link.aps.org/doi/10.1103/PhysRevE.94.022103
[276] Djondjorov, P. A.; Dantchev, D. M.; Vassilev, V. M., Exact results for the Casimir force in a model with Neumann-infinity boundary conditions, AIP Conf. Proc., 1895, 1, Article 090001 pp. (2017), arXiv:https://aip.scitation.org/doi/pdf/10.1063/1.5007401 URL https://aip.scitation.org/doi/abs/10.1063/1.5007401
[277] Valchev, G.; Dantchev, D., Sign change in the net force in sphere-plate and sphere-sphere systems immersed in nonpolar critical fluid due to the interplay between the critical Casimir and dispersion van der Waals forces, Phys. Rev. E, 96, Article 022107 pp. (2017), URL https://link.aps.org/doi/10.1103/PhysRevE.96.022107
[278] Farahmand Bafi, N.; Maciołek, A.; Dietrich, S., Tricritical Casimir forces and order parameter profiles in wetting films of \({}^3 \operatorname{He} -^4 \operatorname{He}\) mixtures, Phys. Rev. E, 95, Article 032802 pp. (2017), URL http://link.aps.org/doi/10.1103/PhysRevE.95.032802
[279] Dantchev, D.; Vassilev, V. M.; Djondjorov, P. A., Analytical results for the Casimir force in a Ginzburg-Landau type model of a film with strongly adsorbing competing walls, Physica A, 510, 302-315 (2018), URL http://www.sciencedirect.com/science/article/pii/S0378437118308562 · Zbl 1514.82207
[280] Dantchev, D.; Vassilev, V.; Djondjorov, P., Boundary conditions influence on the behavior of the Casimir force: A case study via exact results on the Ginzburg-Landau type fluid system with a film geometry, AIP Conf. Proc., 2302, 1, Article 100003 pp. (2020), arXiv:https://aip.scitation.org/doi/pdf/10.1063/5.0033541 URL https://aip.scitation.org/doi/abs/10.1063/5.0033541
[281] Dantchev, D., On the finite-size behavior of one basic model of statistical mechanics describing second order phase transition, J. Theoret. Appl. Mech., 51, 184-199 (2021)
[282] Zhang, P., Critical depletion, adsorption, and intersurface interaction in polymer solutions: A mean-field theory study, Macromolecules, 54, 8, 3790-3799 (2021)
[283] Abhignan, V.; Sankaranarayanan, R., Casimir-like effect from thermal field fluctuations, Braz. J. Phys. (2021) · Zbl 1519.81402
[284] Camargo, C. D.R.; Saldivar, A.; Svaiter, N. F., Fluctuation-induced forces in disordered Landau-Ginzburg model (2021), arXiv:2108.02330v2 [cond-mat.dis-nn]. arXiv:2108.02330
[285] Dantchev, D.; Rudnick, J.; Vassilev, V. M.; Djondjorov, P. A., Exact solution for the order parameter profiles and the Casimir force in \({}^4He\) superfluid films in an effective field theory, Physica A, 522, 324-338 (2019), URL http://www.sciencedirect.com/science/article/pii/S0378437119301566 · Zbl 07561956
[286] Dohm, V., Critical Casimir force in slab geometry with finite aspect ratio: Analytic calculation above and below \(T_c\), Europhys. Lett., 86, 2, 20001 (2009), URL http://stacks.iop.org/0295-5075/86/i=2/a=20001
[287] Dohm, V., Critical free energy and Casimir forces in rectangular geometries, Phys. Rev. E, 84, Article 021108 pp. (2011), URL http://link.aps.org/doi/10.1103/PhysRevE.84.021108
[288] Benet, J.; Paillusson, F.; Kusumaatmaja, H., On the critical Casimir interaction between anisotropic inclusions on a membrane, Phys. Chem. Chem. Phys., 19, 24188-24196 (2017), arXiv:1706.00905
[289] Gambassi, A., Relaxation phenomena at criticality, Eur. Phys. J. B, 64, 3, 379-386 (2008)
[290] Rutkevich, S. B.; Diehl, H. W., Inverse scattering-theory approach to the exact large-\(n\) solutions of \(O ( n ) \phi^4\) models on films and semi-infinite systems bounded by free surfaces, Phys. Rev. E, 91, Article 062114 pp. (2015), arXiv:1503.01263
[291] Diehl, H. W.; Rutkevich, S. B., The three-dimensional \(O ( n ) \phi^4\) model on a strip with free boundary conditions: Exact results for a nontrivial dimensional crossover in the limit \(n \to \infty \), Theoret. Math. Phys., 190, 2, 279-294 (2017) · Zbl 1369.81090
[292] Affleck, I., Universal term in the free energy at a critical point and the conformal anomaly, Phys. Rev. Lett., 56, 7, 746-748 (1986)
[293] Blöte, H. W.J.; Cardy, J. L.; Nightingale, M. P., Conformal invariance, the central charge, and universal finite-size amplitudes at criticality, Phys. Rev. Lett., 56, 742-745 (1986)
[294] Burkhardt, T. W.; Eisenriegler, E., Casimir interaction of spheres in a fluid at the critical point, Phys. Rev. Lett., 74, 16, 3189-3192 (1995)
[295] Eisenriegler, E.; Ritschel, U., Casimir forces between spherical particles in a critical fluid and conformal invariance, Phys. Rev. B, 51, 19, 13717-13734 (1995)
[296] Hanke, A.; Schlesener, F.; Eisenriegler, E.; Dietrich, S., Critical casimir forces between spherical particles in fluids, Phys. Rev. Lett., 81, 9, 1885-1888 (1998)
[297] Bimonte, G.; Emig, T.; Kardar, M., Conformal field theory of critical Casimir interactions in 2d, Europhys. Lett., 104, 2, 21001 (2013), URL http://stacks.iop.org/0295-5075/104/i=2/a=21001
[298] Bimonte, G.; Emig, T.; Kardar, M., Reversing the critical Casimir force by shape deformation, Phys. Lett. B, 743, 138-142 (2015), URL http://www.sciencedirect.com/science/article/pii/S0370269315001197 · Zbl 1343.81196
[299] Dubail, J.; Santachiara, R.; Emig, T., Critical Casimir force between inhomogeneous boundaries, Europhys. Lett., 112, 6, 66004 (2015)
[300] Eisenriegler, E.; Burkhardt, T. W., Casimir interaction of rodlike particles in a two-dimensional critical system, Phys. Rev. E, 94, Article 032130 pp. (2016), URL http://link.aps.org/doi/10.1103/PhysRevE.94.032130
[301] Rajabpour, M. A., Finite size corrections to scaling of the formation probabilities and the Casimir effect in the conformal field theories, J. Stat. Mech. Theory Exp., Article 123101 pp. (2016), URL http://stacks.iop.org/1742-5468/2016/i=12/a=123101 · Zbl 1456.81415
[302] Dubail, J.; Santachiara, R.; Emig, T., Conformal field theory of critical Casimir forces between surfaces with alternating boundary conditions in two dimensions, J. Stat. Mech. Theory Exp., Article 033201 pp. (2017), URL http://stacks.iop.org/1742-5468/2017/i=3/a=033201 · Zbl 1456.92022
[303] Zandi, R.; Shackell, A.; Rudnick, J.; Kardar, M.; Chayes, L. P., Thinning of superfluid films below the critical point, Phys. Rev. E, 76, Article 030601 pp. (2007), URL http://link.aps.org/abstract/PRE/v76/e030601
[304] Mohry, T. F.; Kondrat, S.; Maciolek, A.; Dietrich, S., Critical Casimir interactions around the consolute point of a binary solvent, Soft Matter, 10, 5510-5522 (2014), arXiv:1403.5492. URL http://pubs.rsc.org/en/content/articlepdf/2014/sm/c4sm00622d
[305] Vassilev, V. M.; Djondjorov, P. A.; Dantchev, D. M., Analytic representation of the order parameter profiles and compressibility of a Ginzburg-Landau type model with Dirichlet-Dirichlet boundary conditions on the walls confining the fluid, AIP Conf. Proc., 2164, Article 100008 pp. (2019)
[306] Napiórkowski, M.; Piasecki, J., Casimir force induced by an imperfect Bose gas, Phys. Rev. E, 84, Article 061105 pp. (2011), URL http://link.aps.org/doi/10.1103/PhysRevE.84.061105
[307] Jakubczyk, P.; Napiórkowski, M., Quantum criticality of the imperfect Bose gas in d dimensions, J. Stat. Mech. Theory Exp., P10019 (2013), URL http://stacks.iop.org/1742-5468/2013/i=10/a=P10019 · Zbl 1456.82052
[308] Dantchev, D.; Krech, M.; Dietrich, S., Universality of the thermodynamic casimir effect, Phys. Rev. E, 67, 6, Article 066120 pp. (2003)
[309] Diehl, H. W.; Grüneberg, D.; Shpot, M. A., Fluctuation-induced forces in periodic slabs: Breakdown of \(\epsilon\) expansion at the bulk critical point and revised field theory, Europhys. Lett., 75, 2, 241-247 (2006), URL http://stacks.iop.org/0295-5075/75/241
[310] Grüneberg, D.; Diehl, H. W., Thermodynamic Casimir effects involving interacting field theories with zero modes, Phys. Rev. E, 77, 11, Article 115409 pp. (2008), URL http://link.aps.org/abstract/PRB/v77/e115409
[311] Schmidt, F. M.; Diehl, H. W., Crossover from attractive to repulsive Casimir forces and vice versa, Phys. Rev. Lett., 101, 10, Article 100601 pp. (2008), URL http://link.aps.org/abstract/PRL/v101/e100601
[312] Diehl, H. W.; Schmidt, F. M., The critical Casimir effect in films for generic non-symmetry-breaking boundary conditions, New J. Phys., 13, 12, Article 123025 pp. (2011), URL http://stacks.iop.org/1367-2630/13/i=12/a=123025
[313] Burgsmüller, M.; Diehl, H. W.; Shpot, M. A., Fluctuation-induced forces in strongly anisotropic critical systems, J. Stat. Mech. Theory Exp., P11020 (2010), URL http://stacks.iop.org/1742-5468/2010/i=11/a=P11020
[314] Dohm, V., Crossover from Goldstone to critical fluctuations: Casimir forces in confined \(O ( n )\)-symmetric systems, Phys. Rev. Lett., 110, Article 107207 pp. (2013), URL http://link.aps.org/doi/10.1103/PhysRevLett.110.107207
[315] Dohm, V., Pronounced minimum of the thermodynamic Casimir forces of \(\operatorname{O} ( n )\) symmetric film systems: Analytic theory, Phys. Rev. E, 90, Article 030101 pp. (2014), URL http://link.aps.org/doi/10.1103/PhysRevE.90.030101
[316] Dohm, V., Crossover from low-temperature to high-temperature fluctuations: Universal and nonuniversal Casimir forces of isotropic and anisotropic systems, Phys. Rev. E, 97, Article 062128 pp. (2018), URL https://link.aps.org/doi/10.1103/PhysRevE.97.062128
[317] Krech, M.; Landau, D. P., Casimir effect in critical systems: A Monte Carlo simulation, Phys. Rev. E, 53, 5, 4414-4423 (1996)
[318] Hucht, A., Thermodynamic Casimir effect in \({}^4He\) films near \(T_\lambda \): Monte Carlo results, Phys. Rev. Lett., 99, 18, Article 185301 pp. (2007), URL http://link.aps.org/abstract/PRL/v99/e185301
[319] Hasenbusch, M., The thermodynamic Casimir effect in the neighbourhood of the \(\lambda \)-transition: a Monte Carlo study of an improved three-dimensional lattice model, J. Stat. Mech. Theory Exp., P07031 (2009), URL http://stacks.iop.org/1742-5468/2009/i=07/a=P07031 · Zbl 1459.82361
[320] Hasenbusch, M., Specific heat, internal energy, and thermodynamic casimir force in the neighborhood of the \(\lambda\) transition, Phys. Rev. B, 81, 16, Article 165412 pp. (2010)
[321] Parisen Toldin, F.; Dietrich, S., Critical Casimir forces involving a chemically structured substrate, (Milton, K. A.; Bordag, M., Proceedings of the Ninth Conference on Quantum Field Theory under the Influence of External Conditions (QFEXT09) (2010), World Scientific: World Scientific Singapore), 355-359, URL https://doi.org/10.1142/9789814289931_0044
[322] Edison, J. R.; Tasios, N.; Belli, S.; Evans, R.; van Roij, R.; Dijkstra, M., Critical Casimir forces and colloidal phase transitions in a near-critical solvent: A simple model reveals a rich phase diagram, Phys. Rev. Lett., 114, Article 038301 pp. (2015), URL https://link.aps.org/doi/10.1103/PhysRevLett.114.038301
[323] Parisen Toldin, F.; Tröndle, M.; Dietrich, S., Line contribution to the critical Casimir force between a homogeneous and a chemically stepped surface, J. Phys.: Condens. Matter, 27, 21, Article 214010 pp. (2015), URL http://stacks.iop.org/0953-8984/27/i=21/a=214010
[324] Williams, G. A., Vortex fluctuations in the critical Casimir effect of superfluid and superconducting films, Phys. Rev. Lett., 92, Article 197003 pp. (2004), URL https://link.aps.org/doi/10.1103/PhysRevLett.92.197003
[325] Furukawa, A.; Gambassi, A.; Dietrich, S.; Tanaka, H., Nonequilibrium critical casimir effect in binary fluids, Phys. Rev. Lett., 111, Article 055701 pp. (2013)
[326] Marolt, K.; Roth, R., Statics and dynamics of a finite two-dimensional colloidal system with competing attractive critical Casimir and repulsive magnetic dipole interactions, Phys. Rev. E, 102, Article 042608 pp. (2020), URL https://link.aps.org/doi/10.1103/PhysRevE.102.042608
[327] Yolcu, C.; Rothstein, I. Z.; Deserno, M., Effective field theory approach to Casimir interactions on soft matter surfaces, Europhys. Lett., 96, 20003 (2011), URL http://stacks.iop.org/0295-5075/96/i=2/a=20003
[328] Lin, H.-K.; Zandi, R.; Mohideen, U.; Pryadko, L. P., Fluctuation-induced forces between inclusions in a fluid membrane under tension, Phys. Rev. Lett., 107, Article 228104 pp. (2011), URL http://link.aps.org/doi/10.1103/PhysRevLett.107.228104
[329] Semrau, S.; Idema, T.; Schmidt, T.; Storm, C., Membrane-mediated interactions measured using membrane domains, Biophys. J., 96, 4906-4915 (2009), URL http://www.sciencedirect.com/science/article/pii/S0006349509007802
[330] Ziherl, P.; Podgornik, R.; Žumer, S., Casimir force in liquid crystals close to the nematic-isotropic phase transition, Chem. Phys. Lett., 295, 99-104 (1998)
[331] Bartolo, D.; Long, D.; Fournier, J.-B., Long-range casimir interactions between impurities in nematic liquid crystals and the collapse of polymer chains in such solvents, Europhys. Lett., 49, 729-734 (2000)
[332] Uchida, N., Casimir effect in fluids above the isotropic-lamellar transition, Phys. Rev. Lett., 87, Article 216101 pp. (2001)
[333] Dzyaloshinskii, I. E.; Kats, E. I., Casimir forces in modulated systems, J. Phys.: Condens. Matter, 16, 5659-5667 (2004), URL http://stacks.iop.org/0953-8984/16/i=32/a=003
[334] Golestanian, R.; Ajdari, A.; Fournier, J.-B., Casimir torques between anisotropic boundaries in nematic liquid crystals, Phys. Rev. E, 64, 2, Article 022701 pp. (2001)
[335] Haddadan, F. K.P.; Naji, A.; Shirzadiani, N.; Podgornik, R., Fluctuation-induced interactions in nematics with disordered anchoring energy, J. Phys.: Condens. Matter, 26, 50, Article 505101 pp. (2014), URL http://stacks.iop.org/0953-8984/26/i=50/a=505101
[336] Rodriguez-Lopez, P.; Brito, R.; Soto, R., Dynamical approach to the casimir effect, Phys. Rev. E, 83, Article 031102 pp. (2011)
[337] Haddadan, F. K.P., Pseudo-Casimir forces in nematics with disorders in the bulk, J. Phys.: Condens. Matter, 28, 40, Article 405101 pp. (2016), URL http://stacks.iop.org/0953-8984/28/i=40/a=405101
[338] Karimi Pour Haddadan, F.; Naji, A.; Seifi, A. K.; Podgornik, R., Pseudo-casimir interactions across nematic films with disordered anchoring axis, J. Phys.: Condens. Matter, 26, Article 075103 pp. (2014), arXiv:1310.8501
[339] Ortiz de Zarate, J. M.; Kirkpatrick, T. R.; Sengers, J. V., Non-equilibrium concentration fluctuations in binary liquids with realistic boundary conditions, Eur. Phys. J. E, 38, 99 (2015)
[340] Croccolo, F.; Ortiz de Zárate, J. M.; Sengers, J. V., Non-local fluctuation phenomena in liquids, Eur. Phys. J. E, 39, 12, 125 (2016)
[341] Sachdev, S.; Keimer, B., Quantum criticality, Phys. Today, 64, 2, Article 020000 pp. (2011), arXiv:1102.4628
[342] Sachdev, S., Quantum magnetism and criticality, Nat. Phys., 4, 173-185 (2008), arXiv:0711.3015
[343] Sachdev, S., Quantum criticality: Competing ground states in low dimensions, Science, 288, 5465, 475-480 (2000), arXiv:http://www.sciencemag.org/content/288/5465/475.full.pdf. URL http://www.sciencemag.org/content/288/5465/475.abstract
[344] Sachdev, S., Quantum Phase Transitions (2011), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1233.82003
[345] Pálová, L.; Chandra, P.; Coleman, P., Quantum critical paraelectrics and the Casimir effect in time, Phys. Rev. B, 79, Article 075101 pp. (2009), URL http://link.aps.org/doi/10.1103/PhysRevB.79.075101
[346] Rançon, A.; Henry, L.-P.; Rose, F.; Cardozo, D. L.; Dupuis, N.; Holdsworth, P. C.W.; Roscilde, T., Critical Casimir forces from the equation of state of quantum critical systems, Phys. Rev. B, 94, Article 140506 pp. (2016), URL http://link.aps.org/doi/10.1103/PhysRevB.94.140506
[347] Griffith, M. A.; Continentino, M. A., Casimir amplitudes in topological quantum phase transitions, Phys. Rev. E, 97, 1, Article 012107 pp. (2018)
[348] Kadanoff, L. P., Critical behavior. Universality and scaling, (Green, M. S., Proc. Intern. School of Physics Enrico Fermi, LI (1971), Academic: Academic New York), 101-117
[349] Fisher, M. E., Scaling, universality and renormalization group theory, (Hahne, F. J.W., Lecture Notes in Physics, Vol. 186 (1983), Springer: Springer Berlin), 1-139 · Zbl 0589.76004
[350] Amit, D. J., Field Theory, the Renormalization Group, and Critical Phenomena (1984), World Scientific: World Scientific Singapore
[351] Domb, C., The Critical Point (1996), Taylor and Francis: Taylor and Francis London
[352] Cardy, J., Scaling and Renormalization in Statistical Physics (1996), Cambridge University Press: Cambridge University Press Cambridge
[353] Pelissetto, A.; Vicari, E., Critical phenomena and renormalization-group theory, Phys. Rep., 368, 6, 549-727 (2002), URL http://www.sciencedirect.com/science/article/pii/S0370157302002193 · Zbl 0997.82019
[354] Zinn-Justin, J., Quantum Field Theory and Critical Phenomena (2002), Clarendon: Clarendon Oxford
[355] Kardar, M., Statistical Physics of Fields (2007), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1167.82003
[356] Hocken, R.; Moldover, M. R., Ising critical exponents in real fluids: An experiment, Phys. Rev. Lett., 37, 1, 29-32 (1976)
[357] Kadanoff, L. P.; Wegner, F. J., Some critical properties of the eight-vertex model, Phys. Rev. B, 4, 3989-3993 (1971), URL http://link.aps.org/doi/10.1103/PhysRevB.4.3989
[358] Fisher, M. E., Renormalization group theory: Its basis and formulation in statistical physics, Rev. Modern Phys., 70, 653-681 (1998), URL http://link.aps.org/doi/10.1103/RevModPhys.70.653 · Zbl 1205.82072
[359] Widom, B., Surface tension and molecular correlations near the critical point, J. Chem. Phys., 43, 11, 3892-3897 (1965), URL http://link.aip.org/link/?JCP/43/3892/1
[360] Kadanoff, L. P., Scaling laws for Ising models near \(T_c\), Phys. Phys. Fiz., 2, 263-272 (1966), URL https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.2.263
[361] Widom, B., Equation of state in the neighborhood of the critical point, J. Chem. Phys., 43, 11, 3898-3905 (1965), URL http://link.aip.org/link/?JCP/43/3898/1
[362] Domb, C.; Hunter, D. L., On the critical behavior of ferromagnets, Proc. Phys. Soc. (London), 86, 1147-1151 (1965)
[363] Griffiths, R. B., Thermodynamic functions for fluids and ferromagnets near the critical point, Phys. Rev., 158, 176-187 (1967), URL http://link.aps.org/doi/10.1103/PhysRev.158.176
[364] Wilson, K. G.; Kogut, J., The renormalization group and the \(\epsilon\) expansion, Phys. Rep., 12, 2, 75-199 (1974), URL http://www.sciencedirect.com/science/article/pii/0370157374900234
[365] Fisher, M. E., The renormalization group in the theory of critical behavior, Rev. Modern Phys., 46, 597-616 (1974), URL http://link.aps.org/doi/10.1103/RevModPhys.46.597
[366] Wegner, F. J., Phase Transitions and Critical Phenomena, Vol. 8, 8-126 (1976), Academic: Academic London, Ch. 1
[367] Wegner, F. J., Corrections to scaling laws, Phys. Rev. B, 5, 4529-4536 (1972), URL http://link.aps.org/doi/10.1103/PhysRevB.5.4529
[368] Huang, K., Statistical Mechanics (1987), John Wiley & Sons: John Wiley & Sons New York · Zbl 1041.82500
[369] Privman, V.; Fisher, M. E., Universal critical amplitudes in finite-size scaling, Phys. Rev. B, 30, 322-327 (1984), URL http://link.aps.org/doi/10.1103/PhysRevB.30.322
[370] Stauffer, D.; Ferer, M.; Wortis, M., Universality of second-order phase transitions: The scale factor for the correlation length, Phys. Rev. Lett., 29, 345-349 (1972), URL http://link.aps.org/doi/10.1103/PhysRevLett.29.345
[371] Privman, V.; Hohenberg, P. C.; Aharony, A., Universal critical point amplitude relations, (Domb, C.; Lebowitz, J. L., Phase Ransitions and Critical Phenomena, Vol. 14 (1991), Academic: Academic New York), 1-134
[372] Fisher, M. E.; Ma, S.-K.; Nickel, B. G., Critical exponents for long-range interactions, Phys. Rev. Lett., 29, 917-920 (1972), URL http://link.aps.org/doi/10.1103/PhysRevLett.29.917
[373] Fisher, M. E., Theory of critical point singularities, (Green, M. S., Critical Phenomena, Vol. 51 (1971), Academic: Academic New York), 1-99
[374] Onsager, L., Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev., 65, 3-4, 117-149 (1944) · Zbl 0060.46001
[375] McCoy, B. M.; Wu, T. T., The Two-Dimensional Ising Model (1973), Harvard Univ. Press: Harvard Univ. Press Cambridge · Zbl 1094.82500
[376] Abraham, D. B., Solvable model with a roughening transition for a planar ising ferromagnet, Phys. Rev. Lett., 44, 18, 1165-1168 (1980) · Zbl 1404.82078
[377] Cardy, J. L., Effect of boundary conditions on the operator content of two-dimensional conformal invariant theories, Nuclear Phys. B, 275, 200-218 (1986)
[378] Cardy, J. L., Finite-size scaling, (Domb, C.; Lebowitz, J. L., Phase Transitions and Critical Phenomena, Vol. 11 (1983), Academic: Academic London), 55-127, Ch. 2
[379] Cardy, J. L., Conformal Invariance and Statistical Mechanics (1989), Elsevier: Elsevier New York
[380] Talapov, A. L.; Blöte, H. W.J., The magnetization of the 3d Ising model, J. Phys. A: Math. Gen., 29, 17, 5727-5733 (1996), URL http://stacks.iop.org/0305-4470/29/i=17/a=042 · Zbl 0900.82010
[381] Mermin, N. D.; Wagner, H., Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett., 17, 1133-1136 (1966), URL http://link.aps.org/doi/10.1103/PhysRevLett.17.1133
[382] Pathria, R. K.; Beale, P. D., Statistical Mechanics (2011), Elsevier: Elsevier Amsterdam · Zbl 1209.82001
[383] Ma, S.-K., (Modern Theory of Critical Phenomena. Modern Theory of Critical Phenomena, Advanced Book Classics (2000), Perseus: Perseus Cambridge, Mass.), URL Contributor biographical information http://www.loc.gov/catdir/enhancements/fy0833/00102439-b.html Publisher description http://www.loc.gov/catdir/enhancements/fy0833/00102439-d.html
[384] Berlin, T. H.; Kac, M., The spherical model of a ferromagnet, Phys. Rev., 86, 821-835 (1952), URL http://link.aps.org/doi/10.1103/PhysRev.86.821 · Zbl 0047.45703
[385] Lewis, H. W.; Wannier, G. H., Spherical model of a ferromagnet, Phys. Rev., 88, 682-683 (1952), URL http://link.aps.org/doi/10.1103/PhysRev.88.682.2 · Zbl 0047.23804
[386] Knops, H. J.F., Infinite spin dimensionality limit for nontranslationally invariant interactions, J. Math. Phys., 14, 12, 1918-1920 (1973), URL http://link.aip.org/link/?JMP/14/1918/1
[387] Joyce, G. S., Critical properties of the spherical model, (Domb, C.; Green, M. S., Phase Transitions and Critical Phenomena, Vol. 2 (1972), Academic: Academic London), 375
[388] Joyce, G. S.; Zucker, I. J., Evaluation of the Watson integral and associated logarithmic integral for the \(d\)-dimensional hypercubic lattice, J. Phys. A: Math. Gen., 34, 36, 7349-7354 (2001), URL http://stacks.iop.org/0305-4470/34/i=36/a=314 · Zbl 1001.33011
[389] Watson, G. N., Three triple integrals, Q. J. Math. Oxford, 10, 266-276 (1939) · JFM 65.0277.02
[390] NIST Handbook of Mathematical Functions (2010), NIST and Cambridge University Press: NIST and Cambridge University Press Cambridge · Zbl 1198.00002
[391] Brankov, J. G.; Danchev, D. M., Finite-size scaling for the correlation function of the spherical model with long-range interactions, J. Math. Phys., 32, 2543-2560 (1991), URL https://doi.org/10.1063/1.529149
[392] Singh, S.; Pathria, R. K., Spin-spin correlations in finite systems: Scaling hypothesis and corrections to bulk behavior, Phys. Rev. B, 33, 672-674 (1986)
[393] Stanley, H. E., Spherical model as the limit of infinite spin dimensionality, Phys. Rev., 176, 718-722 (1968), URL http://link.aps.org/doi/10.1103/PhysRev.176.718
[394] Kac, M.; Thompson, C. J., Spherical model and the infinite spin dimensionality limit, Phys. Norveg., 5, 163-168 (1971)
[395] Shcherbina, M., Spherical limit of n-vector correlations, Teor. Mat. Fiz., 77, 1323-1331 (1988)
[396] Khorunzhy, A. M.; Khoruzhenko, B. A.; Pastur, L. A.; Shcherbina, M. V., The large-\(n\) limit in statistical mechanics and spectral theory of disordered systems, (Domb, C.; Lebowitz, L., Phase Transitions and Critical Phenomena, Vol. 15 (1992), Academic: Academic New York), 73-241
[397] Barber, M. N., Critical behavior of a spherical model with a free surface, J. Stat. Phys., 10, 59-88 (1974)
[398] Barber, M. N.; Jasnow, D.; Singh, S.; Weiner, R. A., Critical behaviour of the spherical model with enhanced surface exchange, J. Phys. C: Solid State Phys., 7, 19, 3491-3504 (1974), URL http://stacks.iop.org/0022-3719/7/i=19/a=009
[399] Danchev, D. M.; Brankov, J. G.; Amin, M. E., New surface critical exponents in the spherical model, J. Phys. A: Math. Gen., 30, 5, 1387-1402 (1997), URL https://iopscience.iop.org/article/10.1088/0305-4470/30/5/010/pdf · Zbl 1001.82513
[400] Chamati, H., Finite-size effects in the spherical model of finite thickness, J. Phys. A, 41, 37, Article 375002 pp. (2008) · Zbl 1214.82127
[401] Costache, G., Kac type models of semi-finite spin systems, Phys. Lett. A, 54, 2, 128-130 (1975), URL https://www.sciencedirect.com/science/article/pii/037596017590835X
[402] Costache, G., Kac-Baker model of partially finite spin systems, Phys. Rev. B, 14, 4983-4996 (1976), URL https://link.aps.org/doi/10.1103/PhysRevB.14.4983
[403] Bray, A. J.; Moore, M. A., Critical behaviour of semi-infinite systems, J. Phys. A, 10, 11, 1927-1962 (1977), URL http://stacks.iop.org/0305-4470/10/i=11/a=021
[404] Vojta, T., Quantum version of a spherical model: Crossover from quantum to classical critical behavior, Phys. Rev. B, 53, 710-714 (1996)
[405] Tu, Y.; Weichman, P. B., Quantum spherical models for dirty phase transitions, Phys. Rev. Lett., 73, 6-9 (1994), URL https://link.aps.org/doi/10.1103/PhysRevLett.73.6
[406] Nieuwenhuizen, T. M., Exactly solvable model of a quantum spin glass, Phys. Rev. Lett., 74, 4289-4292 (1995), URL https://link.aps.org/doi/10.1103/PhysRevLett.74.4289
[407] Nieuwenhuizen, T. M.; Ritort, F., Quantum phase transition in spin glasses with multi-spin interactions, Physica A, 250, 1-4, 8-45 (1998)
[408] Chamati, H.; Pisanova, E. S.; Tonchev, N. S., Theory of a spherical-quantum-rotors model: Low-temperature regime and finite-size scaling, Phys. Rev. B, 57, 5798-5811 (1998), URL https://link.aps.org/doi/10.1103/PhysRevB.57.5798
[409] Oliveira, M. H.; Coutinho-Filho, M. D.; Raposo, E. P., Quantum spherical spin model on the \(A B_2\) chain, Phys. Rev. B, 72, Article 214420 pp. (2005), URL https://link.aps.org/doi/10.1103/PhysRevB.72.214420
[410] Oliveira, M. H.; Raposo, E. P.; Coutinho-Filho, M. D., Quantum spherical spin model on hypercubic lattices, Phys. Rev. B, 74, Article 184101 pp. (2006), URL https://link.aps.org/doi/10.1103/PhysRevB.74.184101
[411] Bienzobaz, P. F.; Salinas, S. R., Quantum spherical model with competing interactions, Physica A, 391, 6399-6408 (2012), URL http://www.sciencedirect.com/science/article/pii/S0378437112006929 · Zbl 0779.17026
[412] Grether, M.; de Llano, M.; Baker, G. A., Bose-Einstein condensation in the relativistic ideal Bose gas, Phys. Rev. Lett., 99, Article 200406 pp. (2007), URL https://link.aps.org/doi/10.1103/PhysRevLett.99.200406
[413] Pitaevskii, L.; Stringari, S., (Bose-EInstein Condensation and Superfluidity. Bose-EInstein Condensation and Superfluidity, Iinternational series of monograps on physics, 164 (2016), Oxford University Press) · Zbl 1347.82004
[414] Gunton, J. D.; Buckingham, M. J., Condensation of the ideal Bose gas as a cooperative transition, Phys. Rev., 166, 152-158 (1968), URL http://link.aps.org/doi/10.1103/PhysRev.166.152
[415] Baym, G.; Blaizot, J.-P.; Zinn-Justin, J., The transition temperature of the dilute interacting Bose gas for N internal states, Europhys. Lett., 49, 150-155 (2000), URL http://iopscience.iop.org/0295-5075/49/2/150?fromSearchPage=true
[416] Singh, S.; Pandita, P. N., Scaling and universality of thermodynamics and correlations of an ideal relativistic Bose gas with pair production, Phys. Rev. A, 28, 1752-1761 (1983), URL https://link.aps.org/doi/10.1103/PhysRevA.28.1752
[417] Haber, H. E.; Weldon, H. A., Thermodynamics of an ultrarelativistic ideal Bose gas, Phys. Rev. Lett., 46, 1497-1500 (1981), URL https://link.aps.org/doi/10.1103/PhysRevLett.46.1497
[418] Haber, H. E.; Weldon, H. A., Finite-temperature symmetry breaking as Bose-Einstein condensation, Phys. Rev. D, 25, 502-525 (1982), URL https://link.aps.org/doi/10.1103/PhysRevD.25.502
[419] Singh, S.; Pathria, R. K., Finite-size effects in the spherical model of ferromagnetism: Antiperiodic boundary conditions, Phys. Rev. B, 32, 4618-4627 (1985), URL http://link.aps.org/doi/10.1103/PhysRevB.32.4618
[420] Singh, S.; Pathria, R. K., Bose-Einstein condensation in finite noninteracting systems: A relativistic gas with pair production, Phys. Rev. A, 30, 442-449 (1984), URL https://link.aps.org/doi/10.1103/PhysRevA.30.442
[421] Singh, S.; Pathria, R. K., Bose-Einstein condensation in finite noninteracting systems: A relativistic gas with pair production. II, Phys. Rev. A, 30, 3198-3204 (1984), URL https://link.aps.org/doi/10.1103/PhysRevA.30.3198
[422] Zagrebnov, V. A.; Bru, J.-B., The Bogoliubov model of weakly imperfect Bose gas, Phys. Rep., 350, 291-434 (2001), URL http://www.sciencedirect.com/science/article/pii/S0370157300001320 · Zbl 0971.82006
[423] Kac, M.; Uhlenbeck, G. E.; Hemmer, P. C., On the van der Waals theory of the vapor-liquid equilibrium. I. Discussion of a one-dimensional model, J. Math. Phys., 4, 2, 216-228 (1963), arXiv:https://doi.org/10.1063/1.1703946 · Zbl 0938.82517
[424] Barber, M. N., An introduction to the fundamentals of the renormalization group in critical phenomena, Phys. Rep., 29, 1, 2-84 (1977), URL http://www.sciencedirect.com/science/article/pii/0370157377900503
[425] Pfeuty, P.; Toulouse, G., Introduction To the Renormalization Group and To Critical Phenomena (1977), Wiley: Wiley London
[426] Goldenfeld, N., (Pines, D., Frontiers in Physics. Frontiers in Physics, Lecture on phase transitions and the renormalization group, Frontiers in Physics (1992), Addison-Wesley: Addison-Wesley New York)
[427] Fisk, S.; Widom, B., Structure and free energy of the interface between fluid phases in equilibrium near the critical point, J. Chem. Phys., 50, 3219-3229 (1969)
[428] Fisher, M. E.; Au-Yang, H., Critical wall perturbations and a local free energy functional, Physica A, 101, 1, 255-264 (1980), URL http://www.sciencedirect.com/science/article/B6TVG-46DF6NT-2P/2/be5433922cb6043fe5477492147bd467
[429] Fisher, M. E.; Upton, P. J., Fluid interface tensions near critical end points, Phys. Rev. Lett., 65, 27, 3405-3408 (1990)
[430] Mikheev, L. V.; Fisher, M. E., Exact variational analysis of layered planar Ising models, Phys. Rev. Lett., 70, 186-189 (1993), URL http://link.aps.org/doi/10.1103/PhysRevLett.70.186
[431] Mikheev, L. V.; Fisher, M. E., Two-dimensional layered Ising models: Exact variational formulation and analysis, Phys. Rev. B, 49, 378-402 (1994), URL http://link.aps.org/doi/10.1103/PhysRevB.49.378
[432] Schofield, P., Parametric representation of the equation of state near a critical point, Phys. Rev. Lett., 22, 12, 606-608 (1969)
[433] Josephson, B. D., Equation of state near the critical point, J. Phys. C: Solid State Phys., 2, 7, 1113-1115 (1969), URL http://stacks.iop.org/0022-3719/2/i=7/a=302
[434] Parola, A.; Reatto, L., Hierarchical reference theory of fluids and the critical point, Phys. Rev. A, 31, 5, 3309-3322 (1985)
[435] Diehl, H. W.; Ciach, A., Surface critical behavior in the presence of linear or cubic weak surface fields, Phys. Rev. B, 44, 13, 6642-6662 (1991)
[436] Binney, J. J.; Dowrick, N. J.; Fisher, A. J.; Newman, M. E.J., The Theory of Critical Phenomena, an Introduction To the Renormalization Group (1992), Clarendon: Clarendon Oxford · Zbl 0771.00009
[437] Chaikin, P. M.; Lubensky, T. C., Principles of Condensed Matter Physics (1995), Cambridge University Press: Cambridge University Press Cambridge
[438] Schlesener, F.; Hanke, A.; Dietrich, S., Critical Casimir forces in colloidal suspensions, J. Stat. Phys., 110, 981-1013 (2003) · Zbl 1119.76391
[439] Dantchev, D.; Vassilev, V.; Djondjorov, P., On the behavior of the Casimir force in an exactly solvable model of a liquid film with an ordering field: the case of Dirichlet boundary conditions, AIP Conf. Proc., 2343, Article 130001 pp. (2021)
[440] Ginzburg, V. L.; Sobaynin, A. A., Superfluidity of helium II near the \(\lambda\) point, Sov. Phys. Uspekhi, 19, 773-812 (1976), URL http://stacks.iop.org/0038-5670/19/i=10/a=R01
[441] Ginzburg, V. L.; Sobyanin, A. A., On the theory of superfluidity of helium II near the \(\lambda\) point, J. Low Temp. Phys., 49, 5, 507-543 (1982)
[442] Ginzburg, V. L.; Sobyanin, A. A., Superfluidity of helium II near the \(\lambda \)-point, Japan. J. Appl. Phys., 26, S3-3, 1785-1797 (1987), URL http://iopscience.iop.org/1347-4065/26/S3-3/1785
[443] Ginzburg, V. L.; Sobyanin, A. A., Superfluidity of helium II near the \(\lambda\) point, (Ginzburg, V. L., Superconductivity, Superdiamagnetism, Superfluidity (1987), Mir: Mir Moscow), 242-319, Ch. 6
[444] Gasparini, F. M.; Kimball, M. O.; Mooney, K. P.; Diaz-Avila, M., Finite-size scaling of \({}^4He\) at the superfluid transition, Rev. Modern Phys., 80, 1009-1059 (2008), URL http://link.aps.org/doi/10.1103/RevModPhys.80.1009
[445] Sobyanin, A. A., Superfluid component density distribution near the HeI- HeII phase interface in external fields, Sov. Phys.—JETP. Sov. Phys.—JETP, Zh. Eksp. Teor. Fiz., 63, 1780-1792-947 (1972), URL http://www.jetp.ac.ru/cgi-bin/dn/e_036_05_0941.pdf
[446] Tam, W. Y.; Ahlers, G., Thermal conductivity of \({}^4He I\) from near \(T_\lambda\) to 3.6 K and vapor pressure to 30 bars, Phys. Rev. B, 32, 5932-5958 (1985), URL https://link.aps.org/doi/10.1103/PhysRevB.32.5932
[447] Diehl, H. W., The theory of boundary critical phenomena, Internat. J. Modern Phys. B, 11, 30, 3503-3523 (1997)
[448] Parisen Toldin, F., Boundary critical behavior of the three-dimensional Heisenberg universality class, Phys. Rev. Lett., 126, Article 135701 pp. (2021), URL https://link.aps.org/doi/10.1103/PhysRevLett.126.135701
[449] Hu, M.; Deng, Y.; Lv, J.-P., Extraordinary-log surface phase transition in the three-dimensional \(X Y\) model, Phys. Rev. Lett., 127, Article 120603 pp. (2021), URL https://link.aps.org/doi/10.1103/PhysRevLett.127.120603
[450] Padayasi, J.; Krishnan, A.; Metlitski, M. A.; Gruzberg, I. A.; Meineri, M., The extraordinary boundary transition in the 3d O(N) model via conformal bootstrap (2021), arXiv:2111.03071[cond-mat.stat-mech] arXiv:2111.03071
[451] Parisen Toldin, F.; Metlitski, M. A., Boundary criticality of the 3D \(O(N)\) model: From normal to extraordinary, Phys. Rev. Lett., 128, Article 215701 pp. (2022), URL https://link.aps.org/doi/10.1103/PhysRevLett.128.215701
[452] Toldin, F. P., Surface critical behavior of the three-dimensional O(3) model, J. Phys.: Conf. Ser., 2207, 1, Article 012003 pp. (2022)
[453] Burkhardt, T. W.; Diehl, H. W., Ordinary, extraordinary, and normal surface transitions: Extraordinary-normal equivalence and simple explanation of \(| t - t_c |^{2 - \alpha}\) singularities, Phys. Rev. B, 50, 6, 3894-3898 (1994)
[454] Brézin, E., An investigation of finite size scaling, J. Physique, 43, 15-22 (1982)
[455] Brézin, E., Finite size scaling: part II, Ann. N. Y. Acad. Sci., 410, 339-349 (1983), URL http://dx.doi.org/10.1111/j.1749-6632.1983.tb23332.x
[456] Bray, A. J.; Moore, M. A., Critical temperature shifts for finite slabs in the \(\epsilon \)-expansion, J. Phys. A: Math. Gen., 11, 4, 715-720 (1978), URL http://stacks.iop.org/0305-4470/11/i=4/a=012
[457] Barber, M.; Fisher, M., Critical phenomena in systems of finite thickness I. The spherical model, Ann. Physics, 77, 1, 1-78 (1973), URL http://tinyurl.sfx.mpg.de/sx8v
[458] Boyer, T. H., Van der Waals forces and zero-point energy for dielectric and permeable materials, Phys. Rev. A, 9, 5, 2078-2084 (1974)
[459] Dantchev, D., Finite-size dependence of the helicity modulus within the mean spherical model, J. Stat. Phys., 73, 267-292 (1993), URL https://link.springer.com/content/pdf/10.1007/BF01052761.pdf · Zbl 1102.82304
[460] Chen, X. S.; Dohm, V., Scaling and nonscaling finite-size effects in the Gaussian and the mean spherical model with free boundary conditions, Phys. Rev. E, 67, Article 056127 pp. (2003), URL http://link.aps.org/doi/10.1103/PhysRevE.67.056127
[461] Dantchev, D. M.; Brankov, J. G., On the finite-size behaviour of systems with asymptotically large critical shift, J. Phys. A: Math. Gen., 36, 34, 8915-8933 (2003), URL http://stacks.iop.org/0305-4470/36/i=34/a=301 · Zbl 1049.82019
[462] Fisher, M. E.; Nakanishi, H., Scaling theory for the criticality of fluids between plates, J. Chem. Phys., 75, 12, 5857-5863 (1981), URL http://link.aip.org/link/?JCP/75/5857/1
[463] Nakanishi, H.; E, M., Fisher, Multicriticality of wetting, prewetting, and surface transitions, Phys. Rev. Lett., 49, 21, 1565-1568 (1982)
[464] Nakanishi, H.; Fisher, M. E., Critical point shifts in films, J. Chem. Phys., 78, 6, 3279-3293 (1983), URL http://link.aip.org/link/?JCP/78/3279/1
[465] Binder, K.; Landau, D. P.; Ferrenberg, A. M., Character of the phase transition in thin Ising films with competing walls, Phys. Rev. Lett., 74, 298-301 (1995), URL http://link.aps.org/doi/10.1103/PhysRevLett.74.298
[466] Binder, K.; Landau, D. P.; Ferrenberg, A. M., Thin Ising films with competing walls: A Monte Carlo study, Phys. Rev. E, 51, 2823-2838 (1995), URL http://link.aps.org/doi/10.1103/PhysRevE.51.2823
[467] Binder, K.; Landau, D.; Müller, M., Monte Carlo studies of wetting, interface localization and capillary condensation, J. Stat. Phys., 110, 1411-1514 (2003) · Zbl 1014.82019
[468] Binder, K.; Horbach, J.; Vink, R.; De Virgiliis, A., Confinement effects on phase behavior of soft matter systems, Soft Matter, 4, 1555-1568 (2008)
[469] Tröndle, M.; Kondrat, S.; Gambassi, A.; Harnau, L.; Dietrich, S., Normal and lateral critical Casimir forces between colloids and patterned substrates, Europhys. Lett., 88, 40004 (2009), URL https://iopscience.iop.org/article/10.1209/0295-5075/88/40004/pdf
[470] Albano, E.; Binder, K., Phase coexistence in nanoscopically thin films confined by asymmetric walls, J. Stat. Phys., 135, 991-1008 (2009) · Zbl 1172.82343
[471] Nellen, U.; Dietrich, J.; Helden, L.; Chodankar, S.; Nygård, K.; van der Veen, J. F.; Bechinger, C., Salt-induced changes of colloidal interactions in critical mixtures, Soft Matter, 7, 5360-5364 (2011)
[472] Dantchev, D. M.; Vassilev, V. M.; Djondjorov, P. A., Exact results for the temperature-field behavior of the Ginzburg-Landau Ising type mean-field model, J. Stat. Mech. Theory Exp., P08025 (2015), URL http://stacks.iop.org/1742-5468/2015/i=8/a=P08025 · Zbl 1456.82349
[473] Djondjorov, P.; Vassilev, V.; Dantchev, D., Analysis of the susceptibility in a fluid system with Neumann – plus boundary conditions, MATEC Web Conf., 145, 01001 (2018)
[474] Parry, A. O.; Evans, R.; Nicolaides, D. B., Long-ranged surface perturbations for confined fluids, Phys. Rev. Lett., 67, 2978-2981 (1991), URL http://link.aps.org/doi/10.1103/PhysRevLett.67.2978
[475] Binder, K.; Evans, R.; Landau, D. P.; Ferrenberg, A. M., Interface localization transition in Ising films with competing walls: Ginzburg criterion and crossover scaling, Phys. Rev. E, 53, 5023-5034 (1996), URL http://link.aps.org/doi/10.1103/PhysRevE.53.5023
[476] Mon, K. K.; Nightingale, M. P., Critical surface free energies and universal finite-size scaling amplitudes of three-dimensional xy models by direct Monte Carlo sampling, Phys. Rev. B, 35, 7, 3560-3562 (1987)
[477] Dantchev, D., Two-point correlation function in systems with van der Waals type interaction, Eur. Phys. J. B, 23, 211-219 (2001)
[478] Binder, K., Some recent progress in the phenomenological theory of finite size scaling and application to Monte Carlo studies of critical phenomena, (Privman, V., Finite Size Scaling and Numerical Simulations of Statistical Systems (1990), World Scientific: World Scientific Singapore), 173-219
[479] Ferrenberg, A. M.; Landau, D. P., Critical behavior of the three-dimensional Ising model: A high-resolution Monte Carlo study, Phys. Rev. B, 44, 5081-5091 (1991), URL https://link.aps.org/doi/10.1103/PhysRevB.44.5081
[480] Blote, H. W.J.; Luijten, E.; Heringa, J. R., Ising universality in three dimensions: a Monte Carlo study, J. Phys. A: Math. Gen., 28, 22, 6289-6313 (1995), URL http://stacks.iop.org/0305-4470/28/i=22/a=007 · Zbl 0877.60063
[481] Fisher, M. E.; Barber, M. N.; Jasnow, D., Helicity modulus, superfluidity, and scaling in isotropic systems, Phys. Rev. A, 8, 2, 1111-1124 (1973)
[482] Brézin, E.; Korutcheva, E.; Jolicoeur, T.; Zinn-Justin, J., \( O ( n )\) Vector model with twisted boundary conditions, J. Stat. Phys., 70, 583-598 (1993) · Zbl 0952.82503
[483] Chen, X. S.; Dohm, V., Violation of finite-size scaling in three dimensions, Eur. Phys. J. B, 10, 687 (1999)
[484] Bier, M.; Gambassi, A.; Dietrich, S., Local theory for ions in binary liquid mixtures, J. Chem. Phys., 137, Article 034504 pp. (2012), URL http://dx.doi.org/10.1063/1.4733973
[485] Privman, V., Fluctuating interfaces, surface tension, and capillary waves: An introduction, Internat. J. Modern Phys. C, 03, 05, 857-877 (1992), arXiv:https://doi.org/10.1142/S0129183192000531
[486] Lipowsky, R.; Fisher, M. E., Wetting in random systems, Phys. Rev. Lett., 56, 472-475 (1986), URL http://link.aps.org/doi/10.1103/PhysRevLett.56.472
[487] Lipowsky, R.; Fisher, M. E., Unusual bifurcation of renormalization-group fixed points for interfacial transitions, Phys. Rev. Lett., 57, 2411-2414 (1986)
[488] Dohm, V., Diversity of critical behavior within a universality class, Phys. Rev. E, 77, Article 061128 pp. (2008), URL http://link.aps.org/doi/10.1103/PhysRevE.77.061128
[489] Aharony, A., Two-scale-factor universality and the \(\epsilon\) expansion, Phys. Rev. B, 9, 2107-2109 (1974), URL http://link.aps.org/doi/10.1103/PhysRevB.9.2107
[490] Gerber, P. R., Two scale factor universality in the spherical model, J. Phys. A: Math. Gen., 8, 1, 67-75 (1975), URL http://stacks.iop.org/0305-4470/8/i=1/a=013
[491] Hohenberg, P. C.; Aharony, A.; Halperin, B. I.; Siggia, E. D., Two-scale-factor universality and the renormalization group, Phys. Rev. B, 13, 2986-2996 (1976), URL http://link.aps.org/doi/10.1103/PhysRevB.13.2986
[492] Diehl, H. W.; Chamati, H., Dynamic critical behavior of model A in films: Zero-mode boundary conditions and expansion near four dimensions, Phys. Rev. B, 79, Article 104301 pp. (2009), URL http://link.aps.org/doi/10.1103/PhysRevB.79.104301
[493] Dohm, V., Anisotropy and restricted universality of critical phenomena, J. Phys. A: Math. Gen., 39, 18, L259-L266 (2006) · Zbl 1093.82007
[494] V. Dohm, private communication.
[495] Parsegian, V. A., Van Der Waals Forces (2006), Cambridge University Press: Cambridge University Press New York
[496] Israelachvili, J. N., Intermolecular and Surface Forces (2011), Academic: Academic London
[497] Kleman, M.; Lavrentovich, O. D., Soft Matter Physics (2003), Springer: Springer Berlin
[498] Mahanty, J.; Ninham, B. W., Dispersion Forces (1976), Academic: Academic New York
[499] Cheng, E.; Cole, M. W., Retardation and many-body effects in multilayer-film adsorption, Phys. Rev. B, 38, 987-995 (1988), URL http://link.aps.org/doi/10.1103/PhysRevB.38.987
[500] Nightingale, M. P.; Indekeu, J. O., Effect of criticality on wetting layers, Phys. Rev. Lett., 54, 1824-1827 (1985), URL https://link.aps.org/doi/10.1103/PhysRevLett.54.1824
[501] Dantchev, D.; Rudnick, J.; Barmatz, M., Finite-size effects on the behavior of the susceptibility in van der waals films bounded by strongly absorbing substrates, Phys. Rev. E, 75, 1, Article 011121 pp. (2007), URL http://link.aps.org/abstract/PRE/v75/e011121
[502] Dantchev, D.; Rudnick, J.; Barmatz, M., Finite-size effects in presence of gravity: The behavior of the susceptibility in \({}^3 \text{He}\) and \({}^4 \text{He}\) films near the liquid-vapor critical point, Phys. Rev. E, 80, Article 031119 pp. (2009), URL http://link.aps.org/doi/10.1103/PhysRevE.80.031119
[503] Dantchev, D.; Rudnick, J., Subleading long-range interactions and violations of finite size scaling, Eur. Phys. J. B, 21, 251-268 (2001)
[504] Fisher, M. E., Renormalization Group in Critical Phenomena and Quantum Field Theory, 65-68 (1974), Temple University: Temple University Philadelphia
[505] Lundow, P.; Markström, K., Finite size scaling of the 5d ising model with free boundary conditions, Nuclear Phys. B, 889, 249-260 (2014), URL http://www.sciencedirect.com/science/article/pii/S0550321314003095 · Zbl 1326.82005
[506] Kenna, R.; Berche, B., Fisher’s scaling relation above the upper critical dimension, Europhys. Lett., 105, 2, 26005 (2014), URL http://stacks.iop.org/0295-5075/105/i=2/a=26005
[507] Wittmann, M.; Young, A. P., Finite-size scaling above the upper critical dimension, Phys. Rev. E, 90, Article 062137 pp. (2014), URL http://link.aps.org/doi/10.1103/PhysRevE.90.062137
[508] Kenna, R.; Berche, B., Scaling and Finite-Size Scaling above the Upper Critical Dimension, 1-54 (2015), World Scientific: World Scientific Singapore, Chapter 1. arXiv:http://www.worldscientific.com/doi/pdf/10.1142/9789814632683. URL http://www.worldscientific.com/doi/abs/10.1142/9789814632683
[509] Flores-Sola, E. J.; Berche, B.; Kenna, R.; Weigel, M., Finite-size scaling above the upper critical dimension in ising models with long-range interactions, Eur. Phys. J. B, 88, 1, 28 (2015)
[510] Flores-Sola, E.; Berche, B.; Kenna, R.; Weigel, M., Role of Fourier modes in finite-size scaling above the upper critical dimension, Phys. Rev. Lett., 116, Article 115701 pp. (2016), URL https://link.aps.org/doi/10.1103/PhysRevLett.116.115701
[511] Kenna, R.; Berche, B., Universal finite-size scaling for percolation theory in high dimensions, J. Phys. A, 50, 23, Article 235001 pp. (2017) · Zbl 1375.82039
[512] Grimm, J.; Elçi, E. M.; Zhou, Z.; Garoni, T. M.; Deng, Y., Geometric explanation of anomalous finite-size scaling in high dimensions, Phys. Rev. Lett., 118, Article 115701 pp. (2017), URL https://link.aps.org/doi/10.1103/PhysRevLett.118.115701
[513] Galvani, A.; Gori, G.; Trombettoni, A., Magnetization profiles at the upper critical dimension as solutions of the integer yamabe problem, Phys. Rev. E, 104, Article 024138 pp. (2021), arXiv:2103.12449. URL https://link.aps.org/doi/10.1103/PhysRevE.104.024138
[514] Balandin, A. A.; Lake, R. K.; Salguero, T. T., One-dimensional van der waals materials-advent of a new research field, Appl. Phys. Lett., 121, 4 (2022), URL \(<\) GotoISI \(>\)://WOS:000838017700007
[515] Stolyarov, M. A.; Liu, G.; Bloodgood, M. A.; Aytan, E.; Jiang, C.; Samnakay, R.; Salguero, T. T.; Nika, D. L.; Rumyantsev, S. L.; Shur, M. S.; Bozhilov, K. N.; Balandin, A. A., Breakdown current density in h-BN-capped quasi-1D TaSe \({}_3\) metallic nanowires: prospects of interconnect applications, Nanoscale, 8, 15774-15782 (2016)
[516] Balandin, A. A.; Kargar, F.; Salguero, T. T.; Lake, R. K., One-dimensional van der waals quantum materials, Mater. Today, 55, 74-91 (2022), URL https://www.sciencedirect.com/science/article/pii/S1369702122000748
[517] Joyce, G. S., Exact results for the one-dimensional, anisotropic classical heisenberg model, Phys. Rev. Lett., 19, 581-583 (1967), URL http://link.aps.org/doi/10.1103/PhysRevLett.19.581
[518] Joyce, G. S., Classical heisenberg model, Phys. Rev., 155, 478-491 (1967), URL http://link.aps.org/doi/10.1103/PhysRev.155.478
[519] Friedan, D.; Qiu, Z.; Shenker, S., Conformal invariance, unitarity, and critical exponents in two dimensions, Phys. Rev. Lett., 52, 18, 1575-1578 (1984)
[520] Christe, P.; Henkel, M., (Introduction to Conformal Invariance and its Applications to Critical Phenomena. Introduction to Conformal Invariance and its Applications to Critical Phenomena, Lecture Notes in Physics, vol. 16 (1993), Springer: Springer Berlin) · Zbl 0790.60095
[521] Ketov, S. V., Conformal Field Theory (1995), World Scientific: World Scientific Singapore · Zbl 0875.00029
[522] Gaberdiel, M. R., An introduction to conformal field theory, Rep. Progr. Phys., 63, 4, 607-667 (2000)
[523] Francesco, P.; Mathieu, P.; Sénéchal, D., Conformal Field Theory (2012), Springer Science & Business Media: Springer Science & Business Media Berlin
[524] Nesterenko, V. V.; Nesterenko, A. V., Macroscopic approach to the Casimir friction force, JETP Lett., 99, 10, 581-584 (2014)
[525] Schultz, T. D.; Mattis, D. C.; Lieb, E. H., Two-dimensional ising model as a soluble problem of many fermions, Rev. Modern Phys., 36, 3, 856-871 (1964), URL http://link.aps.org/doi/10.1103/RevModPhys.36.856
[526] Au-Yang, H.; Fisher, M. E., Wall effects in critical systems: Scaling in ising model strips, Phys. Rev. B, 21, 9, 3956-3970 (1980)
[527] Stecki, J., Capillary length of a planar interface from low temperatures to the critical point: An ising d=2 strip, Phys. Rev. B, 47, 12, 7519-7524 (1993)
[528] Abraham, D. B.; Švrakić, N. M., Exact finite-size effects in surface tension, Phys. Rev. Lett., 56, 11, 1172-1174 (1986)
[529] Maciołek, A.; Stecki, J., \( d = 2\) Ising strip with two surface fields solved using the transfer-matrix method, Phys. Rev. B, 54, 2, 1128-1144 (1996), URL http://link.aps.org/doi/10.1103/PhysRevB.54.1128
[530] Ferdinand, A. E.; Fisher, M. E., Bounded and inhomogeneous ising models. I. Specific-heat anomaly of a finite lattice, Phys. Rev., 185, 2, 832-846 (1969)
[531] This result appears for the first time in the current review.
[532] D. Dantchev, F. Hucht, unpublished, the term proportional to \(x^2 \ln x\) has been omitted in Refs. [9] and [158]. (2007).
[533] Wu, M.-C.; Chin-Kun, H., Exact partition functions of the ising model on M x N planar lattices with periodic-aperiodic boundary conditions, J. Phys. A: Math. Gen., 35, 5189 (2002) · Zbl 1043.82007
[534] The data for the case \(L = 50\) are by courtesy of Marek Napiórkowski.
[535] The data for \(L = 90\) are by courtesy of Ania Maciòłek.
[536] Gross, M.; Gambassi, A.; Dietrich, S., Statistical field theory with constraints: Application to critical Casimir forces in the canonical ensemble, Phys. Rev. E, 96, Article 022135 pp. (2017), URL https://link.aps.org/doi/10.1103/PhysRevE.96.022135
[537] Rohwer, C. M.; Squarcini, A.; Vasilyev, O.; Dietrich, S.; Gross, M., Ensemble dependence of critical Casimir forces in films with Dirichlet boundary conditions, Phys. Rev. E, 99, Article 062103 pp. (2019), URL https://link.aps.org/doi/10.1103/PhysRevE.99.062103
[538] Djondjorov, P. A.; Vassilev, V. M.; Danchev, D. M., Analytic solutions for the temperature-field behaviour of the Ginzburg-Landau ising type mean-field model with Dirichlet boundary conditions, AIP Conf. Proc., 2075, Article 200016 pp. (2019)
[539] Eisenriegler, E.; Stapper, M., Critical behavior near a symmetry-breaking surface and the stress tensor, Phys. Rev. B, 50, 14, 10009-10026 (1994)
[540] Abramowitz, M.; Stegun, I. A., HandBook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1970), Dover: Dover New York · Zbl 0515.33001
[541] Campostrini, M.; Hasenbusch, M.; Pelissetto, A.; Rossi, P.; Vicari, E., Critical behavior of the three-dimensional \(\operatorname{XY}\) universality class, Phys. Rev. B, 63, Article 214503 pp. (2001), URL https://link.aps.org/doi/10.1103/PhysRevB.63.214503
[542] Kleinert, H.; Schulte-Frohlinde, V., Critical Properties of \(\Phi^4\)-Theories (2001), World Scientific: World Scientific Singapore, URL https://books.google.com/books?id=FBGtQgAACAAJ · Zbl 1033.81007
[543] Wilks, J., (The Properties of Liquid and Solid Helium. The Properties of Liquid and Solid Helium, The International Series of Monographs on Physics (1967), Clarendon: Clarendon Oxford)
[544] Donelly, R. J.; Barenghi, C. F., The observed properties of liquid helium at the saturated vapor pressure, J. Phys. Chem. Ref. Data, 27, 1217-1274 (1998), URL https://www.nist.gov/system/files/documents/srd/jpcrd551.pdf
[545] Maciòłek, A.; Gambassi, A.; Dietrich, S., Critical Casimir effect in superfluid wetting films, Phys. Rev. E, 76, 3, Article 031124 pp. (2007), URL http://link.aps.org/abstract/PRE/v76/e031124
[546] Obermair, G., Dynamical Aspects of Critical Phenomena, 137-145 (1972), Gordon and Breach: Gordon and Breach New York, Chapter A dynamical spherical model
[547] Verbeure, A.; Zagrebnov, V., Phase transitions and algebra of fluctuation operators in an exactly soluble model of a quantum anharmonic crystal, J. Stat. Phys., 69, 1-2, 329-359 (1992) · Zbl 0888.46054
[548] Momont, B.; Verbeure, A.; Zagrebnov, V., Algebraic structure of quantum fluctuations, J. Stat. Phys., 89, 3-4, 633-653 (1997) · Zbl 0966.82002
[549] Nieuwenhuizen, T. M., Quantum description of spherical spins, Phys. Rev. Lett., 74, 4293-4296 (1995), URL http://dx.doi.org/10.1103/PhysRevLett.74.4293
[550] Singh, S.; Pathria, R. K., Privman-Fisher hypothesis on finite systems: Verification in the case of the spherical model of ferromagnetism, Phys. Rev. B, 31, 4483-4490 (1985), URL http://link.aps.org/doi/10.1103/PhysRevB.31.4483
[551] Chamati, H.; Tonchev, N. S., Quantum critical scaling and the gross-neveu model in 2+1 dimensions, Europhys. Lett., 95, 40005 (2011), URL http://stacks.iop.org/0295-5075/95/i=4/a=40005
[552] Iagolnitzer, D.; Souillard, B., Decay of correlations for slowly decreasing potentials, Phys. Rev. A, 16, 1700-1704 (1977), URL http://link.aps.org/doi/10.1103/PhysRevA.16.1700
[553] Griffiths, R. B., Correlations in ising ferromagnets. I, J. Math. Phys., 8, 3, 478-483 (1967), arXiv:https://doi.org/10.1063/1.1705219
[554] Kelly, D. G.; Sherman, S., General Griffiths’ inequalities on correlations in ising ferromagnets, J. Math. Phys., 9, 3, 466-484 (1968), arXiv:https://doi.org/10.1063/1.1664600
[555] Gorenflo, R.; Mainardi, F., Fractional calculus: Integral and differential equations of fractional order, (Carpinteri, A.; Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer: Springer Wien), 223-227 · Zbl 1438.26010
[556] Brankov, J. G., Finite-size scaling for the mean spherical model with inverse power law interaction, J. Stat. Phys., 56, 3-4, 309-330 (1989)
[557] Choi, J.; Cvijovic, D., Values of the polygamma functions at rational arguments, J. Phys. A, 40, 15019-15028 (2007) · Zbl 1127.33002
[558] Diehl, H. W.; Grüneberg, D.; Hasenbusch, M.; Hucht, A.; Rutkevich, S. B.; Schmidt, F. M., Comment on Casimir force in the \(\operatorname{O} ( \mathit{n} \to \infty )\) model with free boundary conditions, Phys. Rev. E, 91, Article 026101 pp. (2015), URL https://link.aps.org/doi/10.1103/PhysRevE.91.026101
[559] Dantchev, D.; Bergknoff, J.; Rudnick, J., Reply to comment on ‘Casimir force in the \(\operatorname{O} ( n \to \infty )\) model with free boundary conditions’, Phys. Rev. E, 91, Article 026102 pp. (2015), URL http://link.aps.org/doi/10.1103/PhysRevE.91.026102
[560] Singh, S.; Pathria, R. K., Privman-Fisher hypothesis on finite systems: Verification in the case of a relativistic Bose gas with pair production, Phys. Rev. A, 31, 1816-1824 (1985), URL https://link.aps.org/doi/10.1103/PhysRevA.31.1816
[561] Negele, J. W.; Orland, H., Quantum Many-Particle Systems (1998), CRC Press, URL http://dx.doi.org/10.1201/9780429497926
[562] Continentino, M. A., Quantum Scaling in Many-Body Systems (2001), World Scientific: World Scientific Singapore · Zbl 0979.82029
[563] Carr, L. D., (Understanding Quantum Phase Transitions. Understanding Quantum Phase Transitions, Series in Condensed Matter Physics (2011), CRC: CRC New York) · Zbl 1215.82001
[564] Continentino, M., Quantum Scaling in Many-Body Systems. An Approach to Quantum Phase Transitions (2017), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1361.82002
[565] Huckestein, B., Scaling theory of the integer quantum hall effect, Rev. Modern Phys., 67, 357-396 (1995), URL https://link.aps.org/doi/10.1103/RevModPhys.67.357
[566] Sondhi, S. L.; Girvin, S. M.; Carini, J. P.; Shahar, D., Continuous quantum phase transitions, Rev. Modern Phys., 69, 315-333 (1997), URL http://link.aps.org/doi/10.1103/RevModPhys.69.315
[567] Kirkpatrick, T. R.; Belitz, D., Electron Correlations in the Solid State, 297-370 (1999), Imperial College: Imperial College London, Chapter Quantum phase transitions in electronic systems
[568] Vojta, T., Quantum phase transitions in electronic systems, Ann. Physics, 9, 6, 403-440 (2000), arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/1521-3889. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/1521-3889 · Zbl 0962.82008
[569] Vojta, M., Quantum phase transitions, Rep. Progr. Phys., 66, 12, 2069-2110 (2003)
[570] Coleman, P.; Schofield, A. J., Quantum criticality, Nature, 433, 7023, 226-229 (2005), URL http://dx.doi.org/10.1038/nature03279
[571] Sachdev, S., Quantum phase transitions, (Fraser, G., The New Physics: For the Twenty-First Century (2006), Cambridge University Press: Cambridge University Press Cambridge), 229-254
[572] Danchev, D. M.; Tonchev, N. S., On the finite-temperature generalization of the C-theorem and the interplay between classical and quantum fluctuations, J. Phys. A: Math. Gen., 32, 41, 7057-7070 (1999), URL http://stacks.iop.org/0305-4470/32/i=41/a=302 · Zbl 0961.82012
[573] Chamati, H.; Tonchev, N. S.; Danchev, D. M., Some new exact critical-point amplitudes, Phys. Elem. Part. At. Nucl. (PEPAN), 31, 7b, 171-176 (2000)
[574] Venturini, E. L.; Samara, G. A.; Itoh, M.; Wang, R., Pressure as a probe of the physics of \({}^{18} \operatorname{O} \)-substituted \(\operatorname{SrTiO}_3\), Phys. Rev. B, 69, Article 184105 pp. (2004), URL http://link.aps.org/doi/10.1103/PhysRevB.69.184105
[575] Coleman, P., Theory perspective: SCES ’05 vienna, Phys. B: Condens. Matter, 378-380, 1160-1169 (2006), URL http://www.sciencedirect.com/science/article/pii/S0921452606005503
[576] Hertz, J. A., Quantum critical phenomena, Phys. Rev. B, 14, 1165-1184 (1976), URL https://link.aps.org/doi/10.1103/PhysRevB.14.1165
[577] Hohenberg, P. C.; Halperin, B. I., Theory of dynamic critical phenomena, Rev. Modern Phys., 49, 435-479 (1977), URL https://link.aps.org/doi/10.1103/RevModPhys.49.435
[578] Parisi, G., Statistical Field Theory (1988), Addison Wesley: Addison Wesley New York · Zbl 0984.81515
[579] Kopietz, P.; Bartosch, L.; Schütz, F., Introduction To the Functional Renormalization Group (2010), Springer: Springer Berlin · Zbl 1196.82001
[580] Continentino, M. A., Quantum scaling in many-body systems, Phys. Rep., 239, 3, 179-213 (1994), URL http://www.sciencedirect.com/science/article/pii/0370157394901120
[581] Campostrini, M.; Pelissetto, A.; Vicari, E., Finite-size scaling at quantum transitions, Phys. Rev. B, 89, Article 094516 pp. (2014), URL https://link.aps.org/doi/10.1103/PhysRevB.89.094516
[582] Vasin, M.; Ryzhov, V.; Vinokur, V. M., Quantum-to-classical crossover near quantum critical point, Sci. Rep., 5, 18600 (2015), http://www.nature.com/articles/srep18600supplementary-information
[583] Castro Neto, A. H.; Fradkin, E., The theromodynamics of quantum systems and generalization of Zamolodchikov’s C-theorem, Nuclear Phys. B, 400[FS], 525 (1993) · Zbl 0941.81578
[584] Saitoh, M.; Ikegami, H.; Kono, K., Onset of superfluidity in \({}^3 \operatorname{He}\) films, Phys. Rev. Lett., 117, Article 205302 pp. (2016), URL http://link.aps.org/doi/10.1103/PhysRevLett.117.205302
[585] Chamati, H.; Danchev, D. M.; Pisanova, E. S.; Tonchev, N. S., Low-temperature regimes and finite-size scaling in a quantum spherical model (1997), http://arxiv.org/abs/cond-mat/9707280v2. arXiv:http://arxiv.org/abs/cond-mat/9707280v2
[586] Zamolodchikov, A. B., Irreversibility of the flux of the renormalization group in a 2d field theory, JETP Lett., 43, 12, 730-732 (1986)
[587] Zamolodchikov, A., Renormalization group and perturbation theory about fixed points in two-dimensional field theory, Sov. J. Nucl. Phys., 46, 6, 1090-1096 (1987)
[588] Plakida, N.; Tonchev, N., Quantum effects in a d-dimensional exactly solvable model for a structural phase transition, Physica A, 136, 1, 176-188 (1986), URL http://www.sciencedirect.com/science/article/pii/037843718690049X
[589] Sènèchal, D., Mass gap of the nonlinear-\( \sigma\) model through the finite-temperature effective action, Phys. Rev. B, 47, 8353-8356 (1993), URL https://link.aps.org/doi/10.1103/PhysRevB.47.8353
[590] Jolicur, T.; Golinelli, O., \( \sigma \)-Model study of haldane-gap antiferromagnets, Phys. Rev. B, 50, 9265-9273 (1994), URL https://link.aps.org/doi/10.1103/PhysRevB.50.9265
[591] Chamati, H., T = 0 finite-size scaling for a quantum system with long-range interaction, Physica A, 212, 3, 357-368 (1994), URL http://www.sciencedirect.com/science/article/pii/0378437194903387
[592] Lamoreaux, S. K., Demonstration of the Casimir force in the 0.6 to \(6 \operatorname{\mu} m\) range, Phys. Rev. Lett., 78, 1, 5-8 (1997)
[593] Mohideen, U.; Roy, A., Precision measurement of the Casimir force from 0.1 to \(0 . 9 \operatorname{\mu} m\), Phys. Rev. Lett., 81, 21, 4549-4552 (1998)
[594] Roy, A.; Lin, C.-Y.; Mohideen, U., Improved precision measurement of the Casimir force, Phys. Rev. D, 60, 11, Article 111101 pp. (1999), URL http://dx.doi.org/10.1103/PhysRevD.60.111101
[595] Harris, B. W.; Chen, F.; Mohideen, U., Precision measurement of the Casimir force using gold surfaces, Phys. Rev. A, 62, 5, Article 052109 pp. (2000)
[596] Klimchitskaya, G. L.; Mohideen, U.; Mostepanenko, V. M., Casimir and van der waals forces between two plates or a sphere (lens) above a plate made of real metals, Phys. Rev. A, 61, 6, Article 062107 pp. (2000), URL http://dx.doi.org/10.1103/PhysRevA.61.062107
[597] Chen, F.; Mohideen, U.; Klimchitskaya, G. L.; Mostepanenko, V. M., Investigation of the Casimir force between metal and semiconductor test bodies, Phys. Rev. A, 72, 2, Article 020101 pp. (2005), URL http://dx.doi.org/10.1103/PhysRevA.72.020101
[598] Lisanti, M.; Iannuzzi, D.; Capasso, F., Observation of the skin-depth effect on the Casimir force between metallic surfaces, Proc. Natl. Acad. Sci. USA, 102, 34, 11989-11992 (2005), URL http://dx.doi.org/10.1073/pnas.0505614102
[599] Garrett, J. L.; Somers, D. A.T.; Munday, J. N., Measurement of the Casimir force between two spheres, Phys. Rev. Lett., 120, Article 040401 pp. (2018), URL https://link.aps.org/doi/10.1103/PhysRevLett.120.040401
[600] Magazzù, A.; Callegari, A.; Staforelli, J. P.; Gambassi, A.; Dietrich, S.; Volpe, G., Controlling the dynamics of colloidal particles by critical Casimir forces, Soft Matter, 15, 2152-2162 (2019)
[601] Magazzù, A.; Callegari, A.; Staforelli, J. P.; Gambassi, A.; Dietrich, S.; Volpe, G., Dynamics of optically trapped particles tuned by critical Casimir forces and torques, (Biophotonics Congress: Optics in the Life Sciences Congress 2019 (BODA, BRAIN, NTM, OMA, OMP) (2019), Optical Society of America), AT3E.2, URL http://www.osapublishing.org/abstract.cfm?URI=OMA-2019-AT3E.2
[602] Callegari, A.; Magazzù, A.; Gambassi, A.; Volpe, G., Optical trapping and critical Casimir forces, Eur. Phys. J. Plus, 136, 2, 213 (2021)
[603] Latora, V.; Rapisarda, A.; Tsallis, C., Non-Gaussian equilibrium in a long-range Hamiltonian system, Phys. Rev. E, 64, Article 056134 pp. (2001), URL https://link.aps.org/doi/10.1103/PhysRevE.64.056134
[604] Campa, A.; Dauxois, T.; Ruffo, S., Statistical mechanics and dynamics of solvable models with long-range interactions, Phys. Rep., 480, 3, 57-159 (2009), URL https://www.sciencedirect.com/science/article/pii/S0370157309001586
[605] Levin, Y.; Pakter, R.; Rizzato, F. B.; Teles, T. N.; Benetti, F. P.C., Nonequilibrium statistical mechanics of systems with long-range interactions, Phys. Rep., 535, 1-60 (2014), URL https://www.sciencedirect.com/science/article/pii/S0370157313003761 · Zbl 1358.82022
[606] Melkikh, A. V.; Melkikh, E. A., Can we use thermodynamics in the systems with gravity?, Modern Phys. Lett. B, 31, 29, Article 1750272 pp. (2017)
[607] Robertson, K., Stars and steam engines: To what extent do thermodynamics and statistical mechanics apply to self-gravitating systems?, Synthese, 196, 5, 1783-1808 (2019)
[608] Mattos, T. G.; Harnau, L.; Dietrich, S., Many-body effects for critical Casimir forces, J. Chem. Phys., 138, Article 074704 pp. (2013), arXiv:1211.7319
[609] Mattos, T. G.; Harnau, L.; Dietrich, S., Three-body critical Casimir forces, Phys. Rev. E, 91, Article 042304 pp. (2015), URL http://link.aps.org/doi/10.1103/PhysRevE.91.042304
[610] Derjaguin, B., Untersuchungen über die reibung und adhäsion, Theor. Anhaftens Kleiner Teilchen, Kolloid Z., 69, 155-164 (1934)
[611] Diehl, H. W.; Smock, M., Critical behavior at supercritical surface enhancement: Temperature singularity of surface magnetization and order-parameter profile to one-loop order, Phys. Rev. B, 47, 10, 5841-5848 (1993)
[612] Diehl, H. W.; Smock, M., Erratum: Critical behavior at the extraordinary transition: Temperature singularity of surface magnetization and order-parameter profile to one-loop order, Phys. Rev. B, 48, 9, 6740 (1993)
[613] Flöter, G.; Dietrich, S., Universal amplitudes and profiles for critical adsorption, Z. Phys. B, 97, 2, 213-232 (1995)
[614] Burkhardt, T. W.; Eisenriegler, E., Universal order-parameter profiles in confined critical systems with boundary fields, J. Phys. A: Math. Gen., 18, 2, L83-L88 (1985), URL http://stacks.iop.org/0305-4470/18/i=2/a=006
[615] Gallagher, P. D.; Maher, J. V., Partitioning of polystyrene latex spheres in immiscible critical liquid mixtures, Phys. Rev. A, 46, 4, 2012-2021 (1992)
[616] Jayalakshmi, Y.; Kaler, E. W., Phase behavior of colloids in binary liquid mixtures, Phys. Rev. Lett., 78, 7, 1379-1382 (1997)
[617] Ritschel, U.; Gerwinski, M., Casimir forces at tricritical points: theory and possible experiments, Physica A, 243, 362-376 (1997)
[618] Kleban, P.; Peschel, I., Casimir terms and shape instabilities for two-dimensional critical systems, Z. Phys. B, 101, 3, 447-453 (1997)
[619] Kleban, P.; Vassileva, I., Free energy of rectangular domains at criticality, J. Phys. A: Math. Gen., 24, 14, 3407-3412 (1991), URL http://stacks.iop.org/0305-4470/24/i=14/a=027
[620] Tröndle, M.; Harnau, L.; Dietrich, S., Critical adsorption and critical Casimir forces for geometrically structured confinements, J. Chem. Phys., 129, Article 124716 pp. (2008), URL https://aip.scitation.org/doi/pdf/10.1063/1.2977999
[621] Tröndle, M.; Kondrat, S.; Gambassi, A.; Harnau, L.; Dietrich, S., Critical Casimir effect for colloids close to chemically patterned substrates, J. Chem. Phys., 133, Article 074702 pp. (2010)
[622] Dantchev, D.; Rudnick, J., Exact expressions for the partition function of the one-dimensional ising model in the fixed-\(m\) ensemble, Phys. Rev. E, 106, Article L042103 pp. (2022), URL https://link.aps.org/doi/10.1103/PhysRevE.106.L042103
[623] Imboden, M.; Morrison, J.; Campbell, D. K.; Bishop, D. J., Design of a Casimir-driven parametric amplifier, J. Appl. Phys., 116, 13, Article 134504 pp. (2014), URL http://scitation.aip.org/content/aip/journal/jap/116/13/10.1063/1.4896732
[624] Farrokhabadi, A.; Abadian, N.; Kanjouri, F.; Abadyan, M., Casimir force-induced instability in freestanding nanotweezers and nanoactuators made of cylindrical nanowires, Internat. J. Modern Phys. B, 28, 19, Article 1450129 pp. (2014), arXiv:http://www.worldscientific.com/doi/pdf/10.1142/S021797921450129X. URL http://www.worldscientific.com/doi/abs/10.1142/S021797921450129X · Zbl 1293.81038
[625] Farrokhabadi, A.; Mokhtari, J.; Rach, R.; Abadyan, M., Modeling the influence of the Casimir force on the pull-in instability of nanowire-fabricated nanotweezers, Internat. J. Modern Phys. B, 29, 02, Article 1450245 pp. (2015), arXiv:http://www.worldscientific.com/doi/pdf/10.1142/S0217979214502452. URL http://www.worldscientific.com/doi/abs/10.1142/S0217979214502452 · Zbl 1308.81158
[626] Ye, Y.; Hu, Q.; Zhao, Q.; Meng, Y., Casimir repulsive-attractive transition between liquid-separated dielectric metamaterial and metal, Phys. Rev. B, 98, Article 035410 pp. (2018), URL https://link.aps.org/doi/10.1103/PhysRevB.98.035410
[627] Palasantzas, G.; Sedighi, M.; Svetovoy, V. B., Applications of Casimir forces: Nanoscale actuation and adhesion, Appl. Phys. Lett., 117, 12, Article 120501 pp. (2020), arXiv:https://doi.org/10.1063/5.0023150
[628] Munkhbat, B.; Canales, A.; Küçüköz, B.; Baranov, D. G.; Shegai, T. O., Tunable self-assembled Casimir microcavities and polaritons, Nature, 597, 7875, 214-219 (2021)
[629] Xu, Z.; Gao, X.; Bang, J.; Jacob, Z.; Li, T., Non-reciprocal energy transfer through the Casimir effect, Nat. Nanotechnol., 17, 2, 148-152 (2022)
[630] Iannuzzi, D.; Munday, J.; Capasso, F., Ultra-low friction configuration (2007), US Patent Application Publication, Pub. No. US 2007/0066494 A1, Pub. Date: Mar. 22, 2007
[631] Dean, D. S.; Lu, B.-S.; Maggs, A. C.; Podgornik, R., Nonequilibrium tuning of the thermal Casimir effect, Phys. Rev. Lett., 116, Article 240602 pp. (2016), URL http://link.aps.org/doi/10.1103/PhysRevLett.116.240602
[632] Nguyen, T. A.; Newton, A.; Veen, S. J.; Kraft, D. J.; Bolhuis, P. G.; Schall, P., Switching colloidal superstructures by critical Casimir forces, Adv. Mater., 29, Article 1700819 pp. (2017), 1700819
[633] Guo, H.; Stan, G.; Liu, Y., Nanoparticle separation based on size-dependent aggregation of nanoparticles due to the critical Casimir effect, Soft Matter, 14, 8, 1311-1318 (2018)
[634] Marino, E.; Balazs, D. M.; Crisp, R. W.; Hermida-Merino, D.; Loi, M. A.; Kodger, T. E.; Schall, P., Controlling superstructure-property relationships via critical Casimir assembly of quantum dots, J. Phys. Chem. C, 23, 22, 13451-13457 (2019), arXiv:https://doi.org/10.1021/acs.jpcc.9b02033
[635] Vasilyev, O.; Marino, E.; Kluft, B. B.; Schall, P.; Kondrat, S., Debye vs Casimir: controlling the structure of charged nanoparticles deposited on a substrate, Nanoscale, 13, 6475-6488 (2021), URL http://dx.doi.org/10.1039/D0NR09076J
[636] Stuij, S.; Rouwhorst, J.; Jonas, H. J.; Ruffino, N.; Gong, Z.; Sacanna, S.; Bolhuis, P. G.; Schall, P., Revealing polymerization kinetics with colloidal dipatch particles, Phys. Rev. Lett., 127, Article 108001 pp. (2021), URL https://link.aps.org/doi/10.1103/PhysRevLett.127.108001
[637] Xi, Y.; Lankone, R. S.; Sung, L.-P.; Liu, Y., Tunable thermo-reversible bicontinuous nanoparticle gel driven by the binary solvent segregation, Nature Commun., 12, 1, 910 (2021)
[638] Valencia, J. R.V.; Guo, H.; Castaneda-Priego, R.; Liu, Y., Concentration and size effects on the size-selective particle purification method using the critical Casimir force, Phys. Chem. Chem. Phys. (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.