×

Analytical results for the Casimir force in a Ginzburg-Landau type model of a film with strongly adsorbing competing walls. (English) Zbl 1514.82207

Summary: We present both analytical and numerical results for the behaviour of the Casimir force in a Ginzburg-Landau type model of a film of a simple fluid or binary liquid mixture in which the confining surfaces are strongly adsorbing but preferring different phases of the simple fluid, or different components of the mixture. Under such boundary conditions an interface is formed between the competing phases inside the system which are forced to coexist. We investigate the force as a function of the temperature and in the presence of an external ordering field and determine the (temperature-field) relief map of the force. We prove the existence of a single global maximum of the force and find its position and value. We find the asymptotic behaviour of the force when any of the scaling fields becomes large while the other one is negligible. Contrary to the case of symmetric boundary conditions we find, as expected, that the finite system does not possess a phase transition of its own for any finite values of the scaling variables corresponding to the temperature and the ordering field. We perform the study near the bulk critical temperature of the corresponding bulk system and find a perfect agreement with the finite-size scaling theory.

MSC:

82D15 Statistical mechanics of liquids
Full Text: DOI

References:

[1] Evans, R., Liquids at Interfaces (1990), Elsevier: Elsevier Amsterdam
[2] Krech, M., Casimir Effect in Critical Systems (1994), World Scientific: World Scientific Singapore
[3] Brankov, J. G.; Dantchev, D. M.; Tonchev, N. S., The Theory of Critical Phenomena in Finite-Size Systems - Scaling and Quantum Effects (2000), World Scientific: World Scientific Singapore · Zbl 0967.82002
[4] Barber, M. N., Finite-size scaling, (Domb, C.; Lebowitz, J. L., Phase Transitions and Critical Phenomena, vol. 8 (1983), Academic: Academic London), 146-266, (Chapter 2)
[5] (Cardy, J. L., Finite-Size Scaling (1988), North-Holland)
[6] (Privman, V., Finite Size Scaling and Numerical Simulation of Statistical Systems (1990), World Scientific: World Scientific Singapore)
[7] Parry, A. O.; Evans, R., Influence of wetting on phase equilibria: A novel mechanism for critical-point shifts in films, Phys. Rev. Lett., 64, 4, 439-442 (1990)
[8] Fisher, M. E.; Barber, M. N., Scaling theory for finite-size effects in the critical region, Phys. Rev. Lett., 28, 1516-1519 (1972)
[9] Binder, K., Critical behaviour at surfaces, (Domb, C.; Lebowitz, J. L., Phase Transitions and Critical Phenomena, vol. 8 (1983), Academic: Academic London), 1-145, (Chapter 1)
[10] Diehl, H. W., Field-theoretical approach to critical behavior of surfaces, (Domb, C.; Lebowitz, J. L., Phase Transitions and Critical Phenomena, vol. 10 (1986), Academic: Academic New York), 76
[11] Dietrich, S., Wetting phenomena, (Domb, C.; Lebowitz, J. L., Phase Transitions and Critical Phenomena, vol. 12 (1988), Academic: Academic New York), 1
[12] Privman, V., Finite Size Scaling and Numerical Simulations of Statistical Systems, 1 (1990), World Scientific: World Scientific Singapore, Ch. Finite-size scaling theory
[13] Hertlein, C.; Helden, L.; Gambassi, A.; Dietrich, S.; Bechinger, C., Direct measurement of critical Casimir forces, Nature, 451, 7175, 172-175 (2008)
[14] Paladugu, S.; Callegari, A.; Tuna, Y.; Barth, L.; Dietrich, S.; Gambassi, A.; Volpe, G., Nonadditivity of critical Casimir forces, Nature Commun., 7, 11403 (2016)
[15] Garcia, R.; Chan, M. H.W., Critical fluctuation-induced thinning of \(4 h e\) films near the superfluid transition, Phys. Rev. Lett., 83, 6, 1187-1190 (1999)
[16] Ganshin, A.; Scheidemantel, S.; Garcia, R.; Chan, M. H.W., Critical Casimir force in [sup 4]he films: Confirmation of finite-size scaling, Phys. Rev. Lett., 97, 7, Article 075301 pp. (2006)
[17] Garcia, R.; Chan, M. H.W., Critical Casimir effect near the \(h 3 e - h 4 e\) tricritical point, Phys. Rev. Lett., 88, 8, Article 086101 pp. (2002)
[18] Fukuto, M.; Yano, Y. F.; Pershan, P. S., Critical Casimir effect in three-dimensional ising systems: Measurements on binary wetting films, Phys. Rev. Lett., 94, 13, Article 135702 pp. (2005)
[19] Rafaï, S. S.; Bonn, D.; Meunier, J., Repulsive and attractive critical Casimir forces, Physica A, 386, 31 (2007)
[20] Krech, M., Fluctuation-induced forces in critical fluids, J. Phys.: Condens. Matter, 11, R391 (1999)
[21] Gambassi, A., The Casimir effect: From quantum to critical fluctuations, J. Phys.: Conf. Ser., 161, Article 012037 pp. (2009)
[22] Toldin, F. P.; Dietrich, S., Critical Casimir forces and adsorption profiles in the presence of a chemically structured substrate, J. Stat. Mech., 11, P11003 (2010)
[23] Gambassi, A.; Dietrich, S., Critical Casimir forces steered by patterned substrates, Soft Matter, 7, 1247-1253 (2011)
[24] Dean, D. S., Non-equilibrium fluctuation-induced interactions, Phys. Scr., 86, 5, Article 058502 pp. (2012) · Zbl 1267.82088
[25] Vasilyev, O. A., Monte Carlo simulation of critical Casimir forces, 55-110 (2015), World Scientific, (Chapter 2). http://dx.doi.org/10.1142/9789814632683_0002
[26] Peliti, L.; Leibler, S., Strong adsorption in critical binary mixtures, J. Phys. C, 16, 13, 2635 (1983)
[27] Evans, R., Fluids adsorbed in narrow pores: phase equilibria and structure, J. Phys.: Condens. Matter, 2, 8989 (1990)
[28] Flöter, G.; Dietrich, S., Universal amplitudes and profiles for critical adsorption, Z. Phys. B, 97, 2, 213-232 (1995)
[29] Tröndle, M.; Harnau, L.; Dietrich, S., Critical adsorption and critical Casimir forces for geometrically structured confinements, J. Chem. Phys., 129, Article 124716 pp. (2008)
[30] Borjan, Z.; Upton, P. J., Local-functional theory of critical adsorption, Phys. Rev. E, 63, 6, Article 065102 pp. (2001)
[31] Evans, R.; Marconi, U. M.B.; Tarazona, P., Fluid in narrow pores: Adsorption, capillary condensation and critical points, J. Chem. Phys., 84, 4, 2376-2399 (1986)
[32] Okamoto, R.; Onuki, A., Casimir amplitudes and capillary condensation of near-critical fluids between parallel plates: Renormalized local functional theory, J. Chem. Phys., 136, 11, Article 114704 pp. (2012)
[33] Maciòłek, A.; Ciach, A.; Stecki, J., Critical adsorption in the undersaturated regime: Scaling and exact results in ising strips, J. Chem. Phys., 108, 14, 5913-5921 (1998)
[34] Dantchev, D.; Schlesener, F.; Dietrich, S., Interplay of critical Casimir and dispersion forces, Phys. Rev. E, 76, 1, Article 011121 pp. (2007)
[35] Drzewiński, A.; Maciołek, A.; Barasiński, A.; Dietrich, S., Interplay of complete wetting, critical adsorption, and capillary condensation, Phys. Rev. E, 79, Article 041145 pp. (2009)
[36] Cahn, J. W., Critical point wetting, J. Chem. Phys., 66, 8, 3667-3672 (1977)
[37] de Gennes, P. G., Wetting: statics and dynamics, Rev. Modern Phys., 57, 827-863 (1985)
[38] Dantchev, D.; Rudnick, J.; Barmatz, M., Finite-size effects on the behavior of the susceptibility in van der waals films bounded by strongly absorbing substrates, Phys. Rev. E, 75, 1, Article 011121 pp. (2007)
[39] Dantchev, D. M.; Vassilev, V. M.; Djondjorov, P. A., Exact results for the temperature-field behavior of the Ginzburg-Landau ising type mean-field model, J. Stat. Mech. Theory Exp., 2015, 8, P08025 (2015) · Zbl 1456.82349
[40] Nakanishi, H.; Fisher, M. E., Multicriticality of wetting, prewetting, and surface transitions, Phys. Rev. Lett., 49, 21, 1565-1568 (1982)
[41] Bruno, E.; Marconi, U. M.B.; Evans, R., Phase transitions in a confined lattice gas: Prewetting and capillary condensation, Physica, 141A, 187-210 (1987)
[42] Swift, M. R.; Owczarek, A. L.; Indekeu, J. O., Effect of confinement on wetting and drying between opposing boundaries, Europhys. Lett., 14, 5, 475-481 (1991)
[43] Binder, K.; Landau, D.; Müller, M., Monte Carlo studies of wetting, interface localization and capillary condensation, J. Stat. Phys., 110, 1411-1514 (2003) · Zbl 1014.82019
[44] Yabunaka, S.; Okamoto, R.; Onuki, A., Phase separation in a binary mixture confined between symmetric parallel plates: Capillary condensation transition near the bulk critical point, Phys. Rev. E, 87, Article 032405 pp. (2013)
[45] Parry, A. O.; Evans, R., Novel phase behavior of a confined fluid or ising magnet, Physica A, 181, 250 (1992)
[46] Kaganov, M. I.; Omel‘yanchuk, A. N., Phenomenological theory of phase transitions in a thin ferromagnetic plate, J. Exp. Theor. Phys., 34, 4, 895-898 (1972)
[47] Nakanishi, H.; Fisher, M. E., Critical point shifts in films, J. Chem. Phys., 78, 6, 3279-3293 (1983)
[48] Fisher, M. E.; Nakanishi, H., Scaling theory for the criticality of fluids between plates, J. Chem. Phys., 75, 12, 5857-5863 (1981)
[49] Nakanishi, H.; Fisher, M. E., Critical phenomena in fluid films: critical-temperature shifts, J. Phys. C: Solid State Phys., 16, L95-L97 (1983)
[50] Dantchev, D. M.; Vassilev, V. M.; Djondjorov, P. A., Exact results for the behavior of the thermodynamic Casimir force in a model with a strong adsorption, J. Stat. Mech. Theory Exp., 2016, 9, Article 093209 pp. (2016) · Zbl 1457.82137
[51] Indekeu, J. O.; Nightingale, M. P.; Wang, W. V., Finite-size interaction amplitudes and their universality: Exact, mean-field, and renormalization-group results, Phys. Rev. B, 34, 330-342 (1986)
[52] Krech, M., Casimir forces in binary liquid mixtures, Phys. Rev. E, 56, 2, 1642-1659 (1997)
[53] Schlesener, F.; Hanke, A.; Dietrich, S., Critical Casimir forces in colloidal suspensions, J. Stat. Phys., 110, 981 (2003) · Zbl 1119.76391
[54] Gambassi, A.; Dietrich, S., Critical dynamics in thin films, J. Stat. Phys., 123, 929 (2006) · Zbl 1103.82017
[55] Maciòłek, A.; Gambassi, A.; Dietrich, S., Critical Casimir effect in superfluid wetting films, Phys. Rev. E, 76, 3, Article 031124 pp. (2007)
[56] Zandi, R.; Shackell, A.; Rudnick, J.; Kardar, M.; Chayes, L. P., Thinning of superfluid films below the critical point, Phys. Rev. E, 76, Article 030601 pp. (2007)
[57] Dantchev, D.; Rudnick, J.; Barmatz, M., Finite-size effects in presence of gravity: The behavior of the susceptibility in^3he and^4he films near the liquid-vapor critical point, Phys. Rev. E, 80, Article 031119 pp. (2009)
[58] Müller, M.; Binder, K., The interplay between wetting and phase behaviour in binary polymer films and wedges: Monte Carlo simulations and mean field calculations, J. Phys.: Condens. Matter, 17, 9, S333 (2005)
[59] Labbé-Laurent, M.; Tröndle, M.; Harnau, L.; Dietrich, S., Alignment of cylindrical colloids near chemically patterned substrates induced by critical Casimir torques, Soft Matter, 10, 2270 (2014)
[60] Parry, A. O.; Evans, R.; Nicolaides, D. B., Long-ranged surface perturbations for confined fluids, Phys. Rev. Lett., 67, 2978-2981 (1991)
[61] Binder, K.; Landau, D. P.; Ferrenberg, A. M., Character of the phase transition in thin ising films with competing walls, Phys. Rev. Lett., 74, 298-301 (1995)
[62] Binder, K.; Evans, R.; Landau, D. P.; Ferrenberg, A. M., Interface localization transition in ising films with competing walls: Ginzburg criterion and crossover scaling, Phys. Rev. E, 53, 5023-5034 (1996)
[63] Binder, K.; Landau, D. P.; Ferrenberg, A. M., Thin ising films with competing walls: A Monte Carlo study, Phys. Rev. E, 51, 2823-2838 (1995)
[64] Binder, K.; Horbach, J.; Vink, R.; Virgiliis, A. D., Confinement effects on phase behavior of soft matter systems, Soft Matter, 4, 1555-1568 (2008)
[65] Albano, E.; Binder, K., Phase coexistence in nanoscopically thin films confined by asymmetric walls, J. Stat. Phys., 135, 991-1008 (2009) · Zbl 1172.82343
[66] Vasilyev, O. A.; Dietrich, S., Critical casimir forces for films with bulk ordering fields, Europhys. Lett., 104, 6, 60002 (2013)
[67] Burkhardt, T. W.; Diehl, H. W., Ordinary, extraordinary, and normal surface transitions: Extraordinary-normal equivalence and simple explanation of \(| t - t_c |^{2 - \alpha}\) singularities, Phys. Rev. B, 50, 6, 3894-3898 (1994)
[68] Vasilyev, O.; Gambassi, A.; Maciòłek, A.; Dietrich, S., Universal scaling functions of critical casimir forces obtained by Monte Carlo simulations, Phys. Rev. E, 79, Article 041142 pp. (2009)
[69] Bergknoff, J.; Dantchev, D.; Rudnick, J., Casimir force in the rotor model with twisted boundary conditions, Phys. Rev. E, 84, Article 041134 pp. (2011)
[70] The only source we are aware of were such type of integral has been reported in the published literature is Refs. [79], see there Eq. 267.00 on page 147. Unfortunately, the reported analytical expression does not pass the numerical checks, i.e. it is wrong. The expression reported in the current article is derived by us. One can easily check its numerical validity. Details of the corresponding derivation have been published in Ref. [71].
[71] Vassilev, V. M.; Dantchev, D. M.; Djondjorov, P. A., Analytic solutions to a family of boundary-value problems for Ginsburg-Landau type equations, AIP Conf. Proc., 1895, 1, Article 090003 pp. (2017)
[72] Evans, R.; Stecki, J., Solvation force in two-dimensional ising strips, Phys. Rev. B, 49, 13, 8842-8851 (1994)
[73] Nowakowski, P.; Napiórkowski, M., Scaling of solvation force in two-dimensional ising strips, Phys. Rev. E, 78, 6, Article 060602 pp. (2008)
[74] Nowakowski, P.; Napiórkowski, M., Properties of the solvation force of a two-dimensional ising strip in scaling regimes, J. Phys. A: Math. Gen., 42, 47, Article 475005 pp. (2009) · Zbl 1183.82016
[75] Rudnick, J.; Zandi, R.; Shackell, A.; Abraham, D., Boundary conditions and the critical Casimir force on an ising model film: Exact results in one and two dimensions, Phys. Rev. E, 82, Article 041118 pp. (2010)
[76] Abraham, D. B.; Maciołek, A., Casimir interactions in ising strips with boundary fields: Exact results, Phys. Rev. Lett., 105, 5, Article 055701 pp. (2010)
[77] Lipowsky, R.; Fisher, M. E., Wetting in random systems, Phys. Rev. Lett., 56, 472-475 (1986)
[78] Lipowsky, R.; Fisher, M. E., Unusual bifurcation of renormalization-group fixed points for interfacial transitions, Phys. Rev. Lett., 57, 2411-2414 (1986)
[79] Byrd, P. F.; Friedman, M. D., Handbook of Elliptic Integrals for Engineers and Physicists (1971), Springer: Springer Berlin · Zbl 0213.16602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.