×

Finite size scaling of the 5D Ising model with free boundary conditions. (English) Zbl 1326.82005

Summary: There has been a long running debate on the finite size scaling for the Ising model with free boundary conditions above the upper critical dimension, where the standard picture gives an \(L^2\) scaling for the susceptibility and an alternative theory has promoted an \(L^{5 / 2}\) scaling, as would be the case for cyclic boundary. In this paper we present results from simulation of the far largest systems used so far, up to side \(L = 160\) and find that this data clearly supports the standard scaling. Further we present a discussion of why rigorous results for the random-cluster model provide both supports for the standard scaling picture and a clear explanation of why the scalings for free and cyclic boundary should be different.

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics

References:

[1] Aizenman, M., Commun. Math. Phys., 86, 1 (1982) · Zbl 0533.58034
[2] Sokal, A. D., Phys. Lett. A, 71, 451 (1979)
[3] Luijten, E.; Binder, K.; Blöte, H., Eur. Phys. J. B, 9, 289 (1999)
[4] Binder, K., Eur. Phys. J. B, 64, 307 (2008)
[5] Jones, J. L.; Young, A. P., Phys. Rev. B, 71, 174438 (2005)
[6] Berche, B.; Chatelain, C.; Dhall, C.; Kenna, R.; Low, R.; Walter, J.-C., J. Stat. Mech., 2008, P11010 (2008)
[7] Brezin, E.; Zinn-Justin, J., Nucl. Phys. B, 257, 867 (1985)
[8] Lundow, P. H.; Rosengren, A., Philos. Mag., 93, 1755 (2013)
[9] Chen, X. S.; Dohm, V., Phys. Rev. E, 63, 016113 (2000)
[10] Lundow, P. H.; Markström, K., Nucl. Phys. B, 845, 120 (2011) · Zbl 1207.82012
[11] Berche, B.; Kenna, R.; Walter, J.-C., Nucl. Phys. B, 865, 115 (2012) · Zbl 1262.82015
[12] Wolff, U., Phys. Rev. Lett., 62, 361 (1989)
[13] Berche, B.; Kenna, R.; Walter, J.-C., Nucl. Phys. B, 865, 115 (2012) · Zbl 1262.82015
[14] Butera, P.; Pernici, M., Phys. Rev. E, 85, 021105 (2012)
[15] Grimmett, G., The Random-Cluster Model (2004), Springer · Zbl 1045.60105
[16] Pemantle, R., Ann. Probab., 19, 1559 (1991) · Zbl 0758.60010
[17] Benjamini, I.; Kozma, G., Commun. Math. Phys., 259, 257 (2005) · Zbl 1083.60007
[18] Schweinsberg, J., J. Theor. Probab., 21, 378 (2008) · Zbl 1154.60033
[19] Schweinsberg, J., Probab. Theory Relat. Fields, 144, 319 (2009) · Zbl 1183.60039
[20] Aizenman, M., Nucl. Phys. B, 485, 551 (1997) · Zbl 0925.82112
[21] Heydenreich, M.; van der Hofstad, R., Commun. Math. Phys., 270, 335 (2007) · Zbl 1128.82010
[22] Heydenreich, M.; van der Hofstad, R., Probab. Theory Relat. Fields, 149, 397 (2011)
[23] Smirnov, S.; Werner, W., Math. Res. Lett., 8, 729 (2001) · Zbl 1009.60087
[24] Lundow, P. H.; Markström, K.
[25] Luczak, M. J.; Luczak, T., Random Struct. Algorithms, 28, 215 (2006) · Zbl 1089.05066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.