×

Explicit, determinantal, recursive formulas and relations of the Peters polynomials and numbers. (English) Zbl 1537.11037

This paper’s content covers the Bell polynomial of the second kind, the Boole number, the Boole polynomial, determinantal expression, generating function, the Hessenberg determinant, the Peters number, the Peters polynomial, recursive relation. This content has very important applications in combinatorics, probability theory, and in applied sciences. By applying the Faà di Bruno formula with the Bell polynomials of the second kind, the author gives many formulas for the Peters polynomials and numbers and also derivative formulas. The author also gives recursive relations for the Peters polynomials and numbers. Moreover, he gives some applications for alternative recursive relations and recursive relation for the Hessenberg determinants involving these numbers an polynomials and also the Boole polynomials and numbers.

MSC:

11B83 Special sequences and polynomials
05A19 Combinatorial identities, bijective combinatorics
05A10 Factorials, binomial coefficients, combinatorial functions
11B37 Recurrences
11C20 Matrices, determinants in number theory
11Y55 Calculation of integer sequences
33B15 Gamma, beta and polygamma functions
Full Text: DOI

References:

[1] QiF, GuoB‐N. Some properties of the Hermite polynomials. Georgian Math J. 2022;29. https://doi.org/10.1515/gmj‐2020‐2088 · Zbl 1494.33010 · doi:10.1515/gmj‐2020‐2088
[2] WangY, DağlıMC, LiuX‐M, QiF. Explicit, determinantal, and recurrent formulas of generalized Eulerian polynomials. Axioms. 2021;10(1):37. 9 pages. https://doi.org/10.3390/axioms10010037 · doi:10.3390/axioms10010037
[3] Leont’evVK. Symmetric Boolean polynomials. Zh Vychisl Mat Mat Fiz. 2010;50(8):1520‐1531. Russian); translation in Comput. Math. Math. Phys. 50 (2010), no. 8, 1447-1458. at https://doi.org/10.1134/S0965542510080142 · Zbl 1224.06023 · doi:10.1134/S0965542510080142
[4] Leont’evVK. On Boolean polynomials. Dokl Akad Nauk. 2003;388(5):593‐595. (Russian).
[5] RomanS. The Umbral calculus. Pur Appl Math. 1984;111. · Zbl 0536.33001
[6] BoasR. P. Jr., BuckRC. Polynomial expansions of analytic functions. Second printing, corrected. Ergebnisse der Mathematik und ihrer Grenzgebiete, N.F., Bd. 19 Academic Press, Inc., Publishers. New York: Springer‐Verlag, Berlin; 1964. · Zbl 0116.28105
[7] KimDS, KimT. A note on Boole polynomials. Integral Transform Spec Funct. 2014;25(8):627‐633. https://doi.org/10.1080/10652469.2014.891586 · Zbl 1369.11020 · doi:10.1080/10652469.2014.891586
[8] KimT, KimDS. Nonlinear differential equations arising from Boole numbers and their applications. Filomat. 2017;31(8):2441‐2448. https://doi.org/10.2298/FIL1708441K · Zbl 1488.05026 · doi:10.2298/FIL1708441K
[9] SimsekY, SoJS. Identities, inequalities for Boole type polynomials: approach to generating functions and infinite series. J Inequal Appl. 2019;62:11. https://doi.org/10.1186/s13660‐019‐2006‐x · Zbl 1499.05050 · doi:10.1186/s13660‐019‐2006‐x
[10] JordanC. Calculus of finite differences. 1965. · Zbl 0154.33901
[11] KimDS, KimT. Barnes‐type Boole polynomials. Contrib Discrete Math. 2016;11(1):7‐15. https://doi.org/10.11575/cdm.v11i1.62391 · Zbl 1360.11055 · doi:10.11575/cdm.v11i1.62391
[12] KimDS, KimT. Generalized Boole numbers and polynomials. Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM. 2016;110(2):823‐839. https://doi.org/10.1007/s13398‐015‐0270‐2 · Zbl 1348.05031 · doi:10.1007/s13398‐015‐0270‐2
[13] KucukgluI. Derivative formulas related to unification of generating functions for Sheffer type sequences. AIP Conference Proc. 2019;2116(1):100016. https://doi.org/10.1063/1.5114092 · doi:10.1063/1.5114092
[14] RotaG‐C, KahanerD, OdlyzkoA. On the foundations of combinatorial theory, VIII, finite operator calculus. J Math Anal Appl. 1973;42(3):684‐760. https://doi.org/10.1016/0022‐247X(73)90172‐8 · Zbl 0267.05004 · doi:10.1016/0022‐247X(73)90172‐8
[15] SimsekY. A new family of combinatorial numbers and polynomials associated with Peters numbers and polynomials. Appl Anal Discrete Math. 2020;14(3):627‐640. https://doi.org/10.2298/AADM190220042S · Zbl 1474.11073 · doi:10.2298/AADM190220042S
[16] SimsekY. On Boole‐type combinatorial numbers and polynomials. Filomat. 2020;34(2):559‐565. https://doi.org/10.2298/fil2002559s · Zbl 1499.05023 · doi:10.2298/fil2002559s
[17] SimsekY. Peters type polynomials and numbers and their generating functions: approach with p‐adic integral method. Math Methods Appl Sci. 2019;42(18):7030‐7046. https://doi.org/10.1002/mma.5807 · Zbl 1453.11033 · doi:10.1002/mma.5807
[18] SimsekY, SoJS. On generating functions for Boole type polynomials and numbers of higher order and their applications. Symmetry. 2019;11:352. 13 pages. at https://doi.org/10.3390/sym11030352 · Zbl 1423.05009 · doi:10.3390/sym11030352
[19] QiF. An explicit formula for the Bell numbers in terms of the Lah and Stirling numbers. Mediterr J Math. 2016;13(5):2795‐2800. https://doi.org/10.1007/s00009‐015‐0655‐7 · Zbl 1419.11045 · doi:10.1007/s00009‐015‐0655‐7
[20] QiF. Derivatives of tangent function and tangent numbers. Appl Math Comput. 2015;268:844‐858. https://doi.org/10.1016/j.amc.2015.06.123 · Zbl 1410.11018 · doi:10.1016/j.amc.2015.06.123
[21] QiF, GuoB‐N. Explicit formulas for special values of the Bell polynomials of the second kind and for the Euler numbers and polynomials. Mediterr J Math. 2017;14(3):140. 14 pages. at https://doi.org/10.1007/s00009‐017‐0939‐1 · Zbl 1427.11023 · doi:10.1007/s00009‐017‐0939‐1
[22] QiF, LimD, GuoB‐N. Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations. Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM. 2019;113(1):1‐9. https://doi.org/10.1007/s13398‐017‐0427‐2 · Zbl 1439.11088 · doi:10.1007/s13398‐017‐0427‐2
[23] QiF, NiuD‐W, LimD, YaoY‐H. Special values of the Bell polynomials of the second kind for some sequences and functions. J Math Anal Appl. 2020;491(2):124382. 31 pages. at https://doi.org/10.1016/j.jmaa.2020.124382 · Zbl 1444.11040 · doi:10.1016/j.jmaa.2020.124382
[24] QiF, ZhengM‐M. Explicit expressions for a family of the Bell polynomials and applications. Appl Math Comput. 2015;258:597‐607. https://doi.org/10.1016/j.amc.2015.02.027 · Zbl 1338.33002 · doi:10.1016/j.amc.2015.02.027
[25] DağlıMC. Closed formulas and determinantal expressions for higher‐order Bernoulli and Euler polynomials in terms of Stirling numbers. Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM. 2021;115(1):32. 8 pages. at https://doi.org/10.1007/s13398‐020‐00970‐9 · Zbl 1471.11097 · doi:10.1007/s13398‐020‐00970‐9
[26] GuoB‐N, LimD, QiF. Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions. AIMS Math. 2021;6(7):7494‐7517. https://doi.org/10.3934/math.2021438 · Zbl 1484.11084 · doi:10.3934/math.2021438
[27] HuS, KimM‐S. Two closed forms for the Apostol-Bernoulli polynomials. Amanujan J. 2018;46(1):103‐117. https://doi.org/10.1007/s11139‐017‐9907‐4 · Zbl 1441.11035 · doi:10.1007/s11139‐017‐9907‐4
[28] QiF, ChapmanRJ. Two closed forms for the Bernoulli polynomials. J Number Theory. 2016;159:89‐100. https://doi.org/10.1016/j.jnt.2015.07.021 · Zbl 1400.11070 · doi:10.1016/j.jnt.2015.07.021
[29] QiF, DağlıMC, LimD. Several explicit formulas for (degenerate) Narumi and Cauchy polynomials and numbers. Open Math. 2021;19(1):833‐849. https://doi.org/10.1515/math‐2021‐0079 · Zbl 1496.11042 · doi:10.1515/math‐2021‐0079
[30] WeiC‐F, QiF. Several closed expressions for the Euler numbers. J Inequal Appl. 2015;219:8. https://doi.org/10.1186/s13660‐015‐0738‐9 · Zbl 1366.11052 · doi:10.1186/s13660‐015‐0738‐9
[31] ComtetL. Advanced Combinatorics: The Art of Finite and Infinite Expansions. Dordrecht and Boston: Revised and Enlarged Edition, D. Reidel Publishing Co.; 1974. https://doi.org/10.1007/978‐94‐010‐2196‐8 · Zbl 0283.05001 · doi:10.1007/978‐94‐010‐2196‐8
[32] GuoB‐N, PolatlıE, QiF, J. N. Mordeson. Determinantal formulas and recurrent relations for bi‐periodic Fibonacci and Lucas polynomials. Chapter 18 in the Springer Proceedings of the International Conference on Advances in Mathematics and Computing (ICAMC‐2020) organized by Veer Surendra Sai University of Technology, Odisha, India, during 7‐8 February 2020, New Trends in Applied Analysis and Computational Mathematics. Singapore: Springer Book Series Advances in Intelligent Systems and Computing; 2021:263‐276. https://doi.org/10.1007/978‐981‐16‐1402‐6_18 · Zbl 1487.11015 · doi:10.1007/978‐981‐16‐1402‐6_18
[33] QiF, NiuD‐W, LimD, GuoB‐N. Closed formulas and identities for the Bell polynomials and falling factorials. Contrib Discrete Math. 2020;15(1):163‐174. https://doi.org/10.11575/cdm.v15i1.68111 · Zbl 1471.11102 · doi:10.11575/cdm.v15i1.68111
[34] BourbakiN. Functions of a Real Variable, Elementary Theory, Translated from the 1976 French original by Philip Spain. 2004: Elements of Mathematics (Berlin), Springer‐Verlag. https://doi.org/10.1007/978‐3‐642‐59315‐4 · doi:10.1007/978‐3‐642‐59315‐4
[35] QiF. Determinantal expressions and recursive relations of Delannoy polynomials and generalized Fibonacci polynomials. J Nonlinear Convex Anal. 2021;22(7):1225‐1239. · Zbl 1510.11060
[36] DağlıMC. A new recursive formula arising from a determinantal expression for weighted Delannoy numbers. Turk J Math. 2021;45(1):471‐478. · Zbl 1493.05014
[37] EhrenborgR. The Hankel determinant of exponential polynomials. Amer Math Monthly. 2000;107(6):557‐560. https://doi.org/10.2307/2589352 · Zbl 0985.15006 · doi:10.2307/2589352
[38] IsmailMEH. Determinants with orthogonal polynomial entries. J Comput Appl Math. 2005;178(1‐2):255‐266. https://doi.org/10.1016/j.cam.2004.01.042 · Zbl 1083.15011 · doi:10.1016/j.cam.2004.01.042
[39] KızılateşC, DuW‐S, QiF. Several determinantal expressions of generalized Tribonacci polynomials and sequences. Tamkang J Math. 2022;53. https://doi.org/10.5556/j.tkjm.53.2022.3743 · Zbl 1510.11049 · doi:10.5556/j.tkjm.53.2022.3743
[40] QiF, CernanovaV, SemenovYS. Some tridiagonal determinants related to central Delannoy numbers, the Chebyshev polynomials, and the Fibonacci polynomials. Politeh Univ Buchar Sci Bull Ser A Appl Math Phys. 2019;81:123‐136. · Zbl 1513.11057
[41] QiF, GuoB‐N. Some determinantal expressions and recurrence relations of the Bernoulli polynomials. Math. 2016;4(4):1‐11. https://doi.org/10.3390/math4040065 · Zbl 1375.11021 · doi:10.3390/math4040065
[42] QiF, KızılateşC, DuW‐S. A closed formula for the Horadam polynomials in terms of a tridiagonal determinant. Symmetry. 2019;11(6):8. https://doi.org/10.3390/sym11060782 · doi:10.3390/sym11060782
[43] QiF, ZhaoJ‐L, GuoB‐N. Closed forms for derangement numbers in terms of the Hessenberg determinants. Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM. 2018;112:933‐944. https://doi.org/10.1007/s13398‐017‐0401‐z · Zbl 1401.05017 · doi:10.1007/s13398‐017‐0401‐z
[44] CahillND, D’ErricoJR, NarayanDA, NarayanJY. Fibonacci determinants. College Math J. 2002;33(3):221‐225. https://doi.org/10.2307/1559033 · Zbl 1046.11007 · doi:10.2307/1559033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.