×

Two closed forms for the Apostol-Bernoulli polynomials. (English) Zbl 1441.11035

The Apostol-Bernoulli polynomials \(B_n(u, z)\) were introduced by T. M. Apostol [Pac. J. Math. 1, 161–167 (1951; Zbl 0043.07103)] and are a natural generalisation of the Bernoulli polynomials. They have the exponential generating function
\[ \left(\frac{x}{ze^{x}-1}\right)e^{u x}=\sum_{n=0}^{\infty}B_{n}(u, z) \frac{x^n}{n!}, \]
where \(B_n(0, z)\) are the Apostol-Bernoulli numbers, \(B_n(u, 1)\) are the Bernoulli polynomials \(B_n(u)\), and \(B_n(0, 1)\) are the Bernoulli numbers \(B_n\).
In this present work the authors derive two new closed form representations for \(B_{n}(u, z)\). The first involves sums of products of Stirling numbers of the second kind (see Theorem 1.1), and the second as a determinant (see Theorem 1.4). In particular the Stirling number representation theorem states that for \(z\ne 1\) and \(n\in \mathbb{N}\), the Apostol-Bernoulli polynomials \(B_n(u, z)\) may be expressed as
\[ B_n(u, z) = n \sum_{k=0}^{n-1}\frac{(-1)^k k!}{(z-1)^{k+1}} \sum_{r+s=k}\,\, \sum_{l+m=n-1}(-1)^{s+m}\ \binom{n-1}{\ell} \]
\[ \times z^{r}(1-u)^{\ell}u^{m}S(\ell,\ r)S(m,\ s). \]
It follows that for \(n\in \mathbb{N}\), the Apostol-Bernoulli numbers \(B_n(z)\) can be represented as
\[ B_n(z)=n \sum_{k=0}^{n-1}\frac{(-1)^{k}k!}{(z-1)^{k+1}}z^{k}S(n-1,\ k). \]
The proof of Theorem 1.1 involves Bell polynomials and the Faà di Bruno formula for the higher order derivatives of composite functions.

MSC:

11B68 Bernoulli and Euler numbers and polynomials
05A19 Combinatorial identities, bijective combinatorics
11B73 Bell and Stirling numbers

Citations:

Zbl 0043.07103

References:

[1] Apostol, T.M.: On the Lerch zeta function. Pac. J. Math. 1, 161-167 (1951) · Zbl 0043.07103 · doi:10.2140/pjm.1951.1.161
[2] Apostol, T.M.: Addendum to “On the Lerch zeta function”. Pac. J. Math. 2, 10 (1952) · Zbl 0047.04502 · doi:10.2140/pjm.1952.2.10
[3] Bayad, A.: Fourier expansions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. Math. Comp. 80, 2219-2221 (2011) · Zbl 1267.11016 · doi:10.1090/S0025-5718-2011-02476-2
[4] Bourbaki, N.: Functions of a Real Variable, Elementary Theory, Translated from the 1976 French Original by Philip Spain, Elements of Mathematics (Berlin). Springer, Berlin (2004) · Zbl 1085.26001
[5] Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and, Enlarged edn. D. Reidel Publishing Co., Dordrecht (1974) · Zbl 0283.05001 · doi:10.1007/978-94-010-2196-8
[6] Cheon, G.-S.: A note on the Bernoulli and Euler polynomials. Appl. Math. Lett. 16, 365-368 (2003) · Zbl 1055.11016 · doi:10.1016/S0893-9659(03)80058-7
[7] Choi, J., Jang, D.S., Srivastava, H.M.: A generalization of the Hurwitz-Lerch zeta function. Integral Transform. Spec. Funct. 19(1-2), 65-79 (2008) · Zbl 1145.11068
[8] Closed-form expression. https://en.wikipedia.org/wiki/Closed-form_expression
[9] Deeba, E., Rodriguez, D.: Stirlings series and Bernoulli numbers. Am. Math. Mon. 98, 423-426 (1991) · Zbl 0743.11012 · doi:10.2307/2323860
[10] Euler, L.: Institutiones calculi differentialis, (II) 487-491 · Zbl 1218.11026
[11] Garg, M., Jain, K., Srivastava, H.M.: Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch Zeta functions. Integral Transform. Spec. Funct. 17(11), 803-815 (2006) · Zbl 1184.11005 · doi:10.1080/10652460600926907
[12] Howard, F.T.: Applications of a recurrence for Bernoulli numbers. J. Number Theory 52, 157-172 (1995) · Zbl 0844.11019 · doi:10.1006/jnth.1995.1062
[13] Kim, M.-S., Hu, S.: Sums of products of Apostol-Bernoulli numbers. Ramanujan J. 28, 113-123 (2012) · Zbl 1250.11026 · doi:10.1007/s11139-011-9340-z
[14] Lu, D.-Q., Luo, Q.-M.: Some properties of the generalized Apostol type polynomials. Bound. Value Probl. 2013, 64 (2013) · Zbl 1319.11011 · doi:10.1186/1687-2770-2013-64
[15] Lu, D.-Q., Luo, Q.-M.: Some unified formulas and representations for the Apostol-type polynomials. Adv. Differ. Equ. 2015, 137 (2015) · Zbl 1422.11050 · doi:10.1186/s13662-015-0480-0
[16] Luke, Y.L.: The Special Functions and Their Applications, vol. I. Academic Press, New York (1969) · Zbl 0193.01701
[17] Luo, Q.-M.: On the Apostol-Bernoulli polynomials. Cent. Eur. J. Math. 2(4), 509-515 (2004) · Zbl 1073.33001 · doi:10.2478/BF02475959
[18] Luo, Q.-M.: Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions. Taiwan. J. Math. 10(4), 917-925 (2006) · Zbl 1189.11011 · doi:10.11650/twjm/1500403883
[19] Luo, Q.-M.: The multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials of higher order. Integral Transform. Spec. Funct. 20, 377-391 (2009) · Zbl 1237.11009 · doi:10.1080/10652460802564324
[20] Luo, Q.-M.: Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials. Math. Comput. 78, 2193-2208 (2009) · Zbl 1214.11032 · doi:10.1090/S0025-5718-09-02230-3
[21] Luo, Q.-M.: An explicit relationship between the generalized Apostol-Bernoulli and Apostol-Euler polynomials associated with \[\lambda\] λ-Stirling numbers of the second kind. Houston J. Math. 36, 1159-1171 (2010) · Zbl 1221.11062
[22] Luo, Q.-M.: Extension for the Genocchi polynomials and its Fourier expansions and integral representations. Osaka J. Math. 48, 291-309 (2011) · Zbl 1268.33002
[23] Luo, Q.-M.: q-Extensions of some results involving the Luo-Srivastava generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. Filomat 28, 329-351 (2014) · Zbl 1464.05018
[24] Luo, Q.-M.: q-Apostol-Euler polynomials and q-alternating sums. Ukr. Math. J. 65, 1231-1246 (2014) · Zbl 1353.11037
[25] Luo, Q.-M.: Elliptic extensions of the Apostol-Bernoulli and Apostol-Euler polynomials. Appl. Math. Comput. 261, 156-166 (2015) · Zbl 1397.11053
[26] Luo, Q.-M., Srivastava, H.M.: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 308, 290-302 (2005) · Zbl 1076.33006 · doi:10.1016/j.jmaa.2005.01.020
[27] Luo, Q.-M., Srivastava, H.M.: Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 51, 631-642 (2006) · Zbl 1099.33011 · doi:10.1016/j.camwa.2005.04.018
[28] Luo, Q.-M., Srivastava, H.M.: Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind. Appl. Math. Comput. 217, 5702-5728 (2011) · Zbl 1218.11026
[29] Navas, L.M., Ruiz, F.J., Varona, J.L.: Asymptotic estimates for Apostol-Bernoulli and Apostol-Euler polynomials. Math. Comput. 81, 1707-1722 (2012) · Zbl 1268.11033 · doi:10.1090/S0025-5718-2012-02568-3
[30] Qi, F., Chapman, R.J.: Two closed forms for the Bernoulli polynomials. J. Number Theory 159, 89-100 (2016) · Zbl 1400.11070 · doi:10.1016/j.jnt.2015.07.021
[31] Saalschütz, L.: Vorlesungen über die Bernoullischen Zahlen, ihren Zusammenhang mit den Secanten-Coefficienten und ihre wichtigeren Anwendungen, Berlin, 1893 (Available since 1964 in Xerographed form from University Microfilms, Ann Arbor, Michigan, Order No. OP-17136)
[32] Srivastava, H.M.: Some formulae for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Camb. Philos. Soc. 129, 77-84 (2000) · Zbl 0978.11004 · doi:10.1017/S0305004100004412
[33] Srivastava, H.M.: Some generalizations and basic (or \[q\] q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 5, 390-444 (2011)
[34] Srivastava, H.M., Pintér, A.: Remarks on some relationships between the Bernoulli and Euler polynomials. Appl. Math. Lett. 17, 375-380 (2004) · Zbl 1070.33012 · doi:10.1016/S0893-9659(04)90077-8
[35] Srivastava, H.M., Kurt, B., Simsek, Y.: Some families of Genocchi type polynomials and their interpolation functions. Integral Transform. Spec. Funct. 23, 919-938. See also Corrigendum. Integral Transforms Spec. Funct. 23, 939-940 (2012) · Zbl 1253.05021
[36] Vandiver, H.S.: An arithmetical theory of the Bernoulli numbers. Trans. Am. Math. Soc. 51, 502-531 (1942) · Zbl 0063.07951 · doi:10.1090/S0002-9947-1942-0006742-2
[37] Xu, A.-M., Cen, Z.-D.: Some identities involving exponential functions and Stirling numbers and applications. J. Comput. Appl. Math. 260, 201-207 (2014) · Zbl 1293.05011 · doi:10.1016/j.cam.2013.09.077
[38] Zhang, Z.-Z., Yang, J.-Z.: Notes on some identities related to the partial Bell polynomials. Tamsui Oxf. J. Inf. Math. Sci. 28, 39-48 (2012) · Zbl 1270.05016
[39] Zorich, V.A.: Mathematical Analysis I, Translated from the 2002 Fourth Russian Edition by Roger Cooke. Universitext. Springer, Berlin (2009) · Zbl 1151.00002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.