×

Explicit, determinantal, recursive formulas, and generating functions of generalized Humbert-Hermite polynomials via generalized Fibonacci polynomials. (English) Zbl 1535.11032

The purpose of this paper is to study the generalized Humbert-Hermite polynomials, which has been defined by a generating function. An explicit formula and a recursion relation are obtained by using the Faà di Bruno formula and Leibniz’ formula. Furthermore a determinantal representation of generalized Humbert-Hermite polynomials is proved. Then a recursion relation for the generalized Humbert-Hermite polynomials is proved by using the Hessenberg determinant. Finally, multilinear and multilateral generating functions for the generalized Humbert-Hermite polynomials is proved by using the generalized Apostol-Bernoulli polynomials of order \(\alpha\) and a parametric kind of Fubini-type polynomials.
The function \(p(x)\) in theorem 3.2. is not defined.

MSC:

11B83 Special sequences and polynomials
11B39 Fibonacci and Lucas numbers and polynomials and generalizations
11B73 Bell and Stirling numbers
33C47 Other special orthogonal polynomials and functions
Full Text: DOI

References:

[1] DereR, SimsekY. Hermite base Bernoulli type polynomials on the umbral algebra. Russian J Math Phys. 2015;22(1):1‐5. doi:10.1134/S106192081501001X · Zbl 1318.33015
[2] GouldHW. Inverse series relation and other expansions involving Humbert polynomials. Duke Math J. 1965;32:697‐711. · Zbl 0135.12001
[3] DjorjevićGB, DjordjevicSS. Convolutions of the generalized Morgan‐Voyce polynomials. Appl Math Comput. 2015;259:106‐115. doi:10.1016/j.amc.2015.02.025 · Zbl 1390.11032
[4] HsuLC. On Stirling‐type pairs and extended Gegenbauer‐Humbert‐Fibonacci polynomials. Applications of Fibonacci Numbers, Vol. 5: Kluwer Academic Publishers; 1993:367‐377. · Zbl 0795.05003
[5] KilarN, SimsekY. Computational formulas and identities for new classes of Hermite based Milne‐Thomson type polynomials: analysis of generating functions with Euler’s formula. Math Methods Appl Sci. 2021;44:6731‐6762. doi:10.1002/mma.7220 · Zbl 1470.05017
[6] KhanWA, PathanMA. On a class of Humbert‐Hermite polynomials. Novi Sad J Math. 2021;51:1‐11. doi:10.30755/NSJOM.05832 · Zbl 1506.33008
[7] MilovanovićGV, DjordjevićGB. On some properties of Humbert’s polynomials. Fibonacci Quart. 1987;25:356‐360. · Zbl 0635.33006
[8] OzdemirG, SimsekY, MilovanovićGV. Generating functions for special polynomials and numbers including Apostol‐type and Humbert‐type polynomials. Mediterr J Math. 2017;14:117. doi:10.1007/s00009‐017‐0918‐6 · Zbl 1373.05012
[9] PathanMA, KhanMA. On polynomials associated with Humbert’s polynomials. Publ Inst Math (Beograd). 1997;62:53‐62. · Zbl 0992.33005
[10] WangW, WangH. Generalized Humbert polynomials via generalized Fibonacci polynomials. Appl Math Comput. 2017;307:204‐216. doi:10.1016/j.amc.2017.02.050 · Zbl 1411.11017
[11] LeeG, AsciM. Some properties of the
[( \left(p,q\right) \]\)‐Fibonacci and
[( \left(p,q\right) \]\)‐Lucas polynomials. J Appl Math. 2012;2012:264842. doi:10.1155/2012/264842 · Zbl 1278.11017
[12] NallıA, HaukkanenP. On generalized Fibonacci and Lucas polynomials. Chaos Solitons Fractals. 2009;42:3179‐3186. doi:10.1016/j.chaos.2009.04.048 · Zbl 1198.11017
[13] KızılateşC. New families of Horadam numbers associated with finite operators and their applications. Math Methods Appl Sci. 2021;44:14371‐14381. doi:10.1002/mma.7702 · Zbl 1504.11032
[14] WangW, WangH. Some results on convolved
[( \left(p,q\right) \]\)‐Fibonacci polynomials. Integral Transforms Spec Funct. 2015;26:340‐356. doi:10.1080/10652469.2015.1007502 · Zbl 1350.11027
[15] DattoliG, ChiccoliC, LorenzuttaS, MaimoG, TorreA. Generalized Bessel functions and generalized Hermite polynomials. J Math Anal Appl. 1993;178:509‐516. doi:10.1006/jmaa.1993.1321 · Zbl 0785.33003
[16] DattoliG, LorenzuttaS, CesaranoC. Finite sums and generalized forms of Bernoulli polynomials. Rend Mat Appl. 1999;19:385‐391. · Zbl 0958.33006
[17] DattoliG, TorreA, LorenzuttaS. Operational identities and properties of ordinary and generalized special functions. J Math Anal Appl. 1999;236:399‐414. · Zbl 0943.33005
[18] PathanMA, KhanWA. On a class of generalized Humbert-Hermite polynomials via generalized Fibonacci polynomials. Turk J Math. 2022;46:929‐945. doi:10.3906/mat‐2108‐30 · Zbl 1511.11019
[19] SimsekY. Formulas for Poisson‐Charlier, Hermite, Milne‐Thomson and other type polynomials by their generating functions and p‐adic integral approach. Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM. 2019;113:931‐948. · Zbl 1429.11046
[20] QiF. An explicit formula for the Bell numbers in terms of the Lah and Stirling numbers. Mediterr J Math. 2016;13(5):2795‐2800. doi:10.1007/s00009‐015‐0655‐7 · Zbl 1419.11045
[21] QiF, GuoB‐N. Explicit formulas for special values of the Bell polynomials of the second kind and for the Euler numbers and polynomials. Mediterr J Math. 2017;14(3):140. doi:10.1007/s00009‐017‐0939‐1 · Zbl 1427.11023
[22] QiF, LimD, GuoB‐N. Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations. Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM. 2019;113(1):1‐9. doi:10.1007/s13398‐017‐0427‐2 · Zbl 1439.11088
[23] QiF, NiuD‐W, LimD, YaoY‐H. Special values of the Bell polynomials of the second kind for some sequences and functions. J Math Anal Appl. 2020;491(2):124382. doi:10.1016/j.jmaa.2020.124382 · Zbl 1444.11040
[24] QiF, ZhengM‐M. Explicit expressions for a family of the Bell polynomials and applications. Appl Math Comput. 2015;258:597‐607. doi:10.1016/j.amc.2015.02.027 · Zbl 1338.33002
[25] GuoB‐N, LimD, QiF. Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions. AIMS Math. 2021;6(7):7494‐7517. doi:10.3934/math.2021438 · Zbl 1484.11084
[26] QiF, NiuD‐W, LimD, GuoB‐N. Closed formulas and identities for the Bell polynomials and falling factorials. Contrib Discrete Math. 2020;15(1):163‐174. doi:10.11575/cdm.v15i1.68111 · Zbl 1471.11102
[27] WangY, DağlıMC, LiuX‐M, QiF. Explicit, determinantal, and recurrent formulas of generalized Eulerian polynomials. Axioms. 2021;10(1):37. doi:10.3390/axioms10010037
[28] DağlıMC. Closed formulas and determinantal expressions for higher‐order Bernoulli and Euler polynomials in terms of Stirling numbers. Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM. 2021;115(1):32. doi:10.1007/s13398‐020‐00970‐9 · Zbl 1471.11097
[29] QiF, DağlıMC, LimD. Several explicit formulas for (degenerate) Narumi and Cauchy polynomials and numbers. Open Math. 2021;19(1):833‐849. doi:10.1515/math‐2021‐0079 · Zbl 1496.11042
[30] DağlıMC. A new recursive formula arising from a determinantal expression for weighted Delannoy numbers. Turk J Math. 2021;45(1):471‐478. doi:10.3906/mat‐2009‐92 · Zbl 1493.05014
[31] DağlıMC. Explicit, determinantal, recursive formulas and relations of the Peters polynomials and numbers. Math Meth Appl Sci. 2022;45:2582‐2591. doi:10.1002/mma.7941 · Zbl 1537.11037
[32] ComtetL. Advanced Combinatorics: The Art of Finite and Infinite Expansions. Revised and Enlarged Edition: D. Reidel Publishing Co.; 1974. · Zbl 0283.05001
[33] BourbakiN. Functions of a Real Variable, Elementary Theory, Translated from the 1976 French original by Philip Spain. Elements of Mathematics: Springer‐Verlag; 2004. · Zbl 1085.26001
[34] AnđjelićM, daFonsecaCM. On a determinantal formula for derangement numbers. Kragujevac J Math. 2023;47(6):847‐850. · Zbl 07891353
[35] AnđjelićM, daFonsecaCM. On the constant coefficients of a certain recurrence relation: a simple proof. Heliyon. 2021;7(8):1‐3. doi:10.1016/j.heliyon.2021.e07764
[36] AnđjelićM, daFonsecaCM. A short proof for a determinantal formula for generalized Fibonacci numbers. Matematiche (Catania). 2019;74(2):363‐367. doi:10.4418/2019.74.2.9 · Zbl 1477.11032
[37] daFonsecaCM. On a closed form for derangement numbers: an elemantary proof. Rev R Acad Cienc Exactas F s Nat Ser A Math RACSAM. 2020;114:146. doi:10.1007/s13398‐020‐00879‐3 · Zbl 1442.05005
[38] CahillND, D’ErricoJR, NarayanDA, NarayanJY. Fibonacci determinants. College Math J. 2002;33(3):221‐225. doi:10.2307/1559033 · Zbl 1046.11007
[39] ErkusE, SrivastavaHM. A unified presentation of some families of multivariable polynomials. Integral Transforms Spec Funct. 2006;17:267‐273. doi:10.1080/10652460500444928 · Zbl 1098.33016
[40] SrivastavaHM, ManochaHLA. Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester). Wiley; 1984. · Zbl 0535.33001
[41] LuoQ‐M. On the Apostol Bernoulli polynomials. Central European J Math. 2004;2:509‐515. doi:10.2478/BF02475959 · Zbl 1073.33001
[42] LuoQ‐M, SrivastavaHM. Some relationships between the Apostol Bernoulli and Apostol Euler polynomials. Comput Math Appl. 2006;51:631‐642. doi:10.1016/j.camwa.2005.04.018 · Zbl 1099.33011
[43] LuoQ‐M, SrivastavaHM. Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J Math Anal Appl. 2005;308:290‐302. doi:10.1016/j.jmaa.2005.01.020 · Zbl 1076.33006
[44] SrivastavaHM, KızılateşC. A parametric kind of the Fubini‐type polynomials. Rev R Acad Cenc Exactas Fís Nat Ser A Mat RACSAM. 2019;113:3253‐3267. doi:10.1007/s13398‐019‐00687‐4 · Zbl 1439.11068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.