×

Stability of heteroclinic cycles: a new approach based on a replicator equation. (English) Zbl 1542.34045

J. Nonlinear Sci. 33, No. 6, Paper No. 99, 51 p. (2023); correction ibid. 33, No. 6, Paper No. 121, 3 p. (2023).
Summary: This paper analyses the stability of cycles within a heteroclinic network formed by six cycles lying in a three-dimensional manifold, for a one-parameter model developed in the context of polymatrix replicator equations. We show the asymptotic stability of the network for a range of parameter values compatible with the existence of an interior equilibrium and we describe an asymptotic technique to decide which cycle (within the network) is visible in numerics. The technique consists of reducing the relevant dynamics to a suitable one-dimensional map, the so-called projective map. The stability of the fixed points of the projective map determines the stability of the associated cycles. The description of this new asymptotic approach is applicable to more general types of networks and is potentially useful in computational dynamics.

MSC:

34D20 Stability of solutions to ordinary differential equations
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
37C75 Stability theory for smooth dynamical systems
92B20 Neural networks for/in biological studies, artificial life and related topics
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms

References:

[1] Afraimovich, VS; Moses, G.; Young, T., Two-dimensional heteroclinic attractor in the generalized Lotka-Volterra system, Nonlinearity, 29, 5, 1645 (2016) · Zbl 1342.34073 · doi:10.1088/0951-7715/29/5/1645
[2] Aguiar, MAD, Is there switching for replicator dynamics and bimatrix games?, Physica D, 240, 18, 1475-1488 (2011) · Zbl 1222.91008 · doi:10.1016/j.physd.2011.06.016
[3] Aguiar, MAD; Labouriau, IS; Rodrigues, AAP, Switching near a network of rotating nodes, Dyn. Syst., 25, 1, 75-95 (2010) · Zbl 1186.37060 · doi:10.1080/14689360903252119
[4] Alishah, HN; Duarte, P., Hamiltonian evolutionary games, J. Dyn. Games, 2, 1, 33 (2015) · Zbl 1334.91017 · doi:10.3934/jdg.2015.2.33
[5] Alishah, HN; Duarte, P.; Peixe, T., Conservative and dissipative polymatrix replicators, J. Dyn. Games, 2, 2, 157 (2015) · Zbl 1360.91028 · doi:10.3934/jdg.2015.2.157
[6] Alishah, HN; Duarte, P.; Peixe, T., Asymptotic Poincaré maps along the edges of polytopes, Nonlinearity, 33, 1, 469 (2019) · Zbl 1429.91057 · doi:10.1088/1361-6544/ab49e6
[7] Alishah, HN; Duarte, P.; Peixe, T., Asymptotic dynamics of hamiltonian polymatrix replicators, Nonlinearity, 36, 6, 3182 (2023) · Zbl 1520.37049 · doi:10.1088/1361-6544/acd043
[8] Ashwin, P.; Postlethwaite, C., On designing heteroclinic networks from graphs, Physica D, 265, 26-39 (2013) · Zbl 1417.37098 · doi:10.1016/j.physd.2013.09.006
[9] Barendregt, NW; Thomas, PJ, Heteroclinic cycling and extinction in May-Leonard models with demographic stochasticity, J. Math. Biol., 86, 2, 30 (2023) · Zbl 1504.92094 · doi:10.1007/s00285-022-01859-4
[10] Bunimovich, LA; Webb, BZ, Isospectral compression and other useful isospectral transformations of dynamical networks, Chaos Interdiscip. J. Nonlinear Sci., 22, 3 (2012) · Zbl 1319.05124 · doi:10.1063/1.4739253
[11] Castro, S.B.S.D., Garrido-da Silva, L: Finite switching near heteroclinic networks. arXiv preprint arXiv:2211.04202 (2022)
[12] Castro, SBSD; Labouriau, IS; Podvigina, O., A heteroclinic network in mode interaction with symmetry, Dyn. Syst., 25, 3, 359-396 (2010) · Zbl 1205.37043 · doi:10.1080/14689367.2010.506183
[13] Castro, SB; Ferreira, A.; Garrido-da-Silva, L.; Labouriau, IS, Stability of cycles in a game of Rock-Scissors-Paper-Lizard-Spock, SIAM J. Appl. Dyn. Syst., 21, 4, 2393-2431 (2022) · Zbl 1509.34045 · doi:10.1137/21M1435215
[14] Field, MJ, Lectures on Bifurcations, Dynamics and Symmetry (2020), CRC Press · Zbl 0857.58013 · doi:10.1201/9780429332692
[15] Field, M.; Swift, JW, Stationary bifurcation to limit cycles and heteroclinic cycles, Nonlinearity, 4, 4, 1001 (1991) · Zbl 0744.58056 · doi:10.1088/0951-7715/4/4/001
[16] Garrido-da Silva, L.; Castro, SBSD, Stability of quasi-simple heteroclinic cycles, Dyn. Syst., 34, 1, 14-39 (2019) · Zbl 1411.34060 · doi:10.1080/14689367.2018.1445701
[17] Gaunersdorfer, A.; Hofbauer, J., Fictitious play, Shapley polygons, and the replicator equation, Games Econ. Behav., 11, 2, 279-303 (1995) · Zbl 0841.90143 · doi:10.1006/game.1995.1052
[18] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (2013), Springer · Zbl 0515.34001
[19] Hofbauer, J., Sigmund, K.: Permanence for replicator equations. In: Dynamical Systems, pp. 70-91. Springer (1987) · Zbl 0638.92012
[20] Hofbauer, J.; Sigmund, K., Evolutionary Games and Population Dynamics (1998), Cambridge University Press · Zbl 0914.90287 · doi:10.1017/CBO9781139173179
[21] Katok, A.; Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems (1997), Cambridge University Press · Zbl 0878.58019
[22] Krupa, M.; Melbourne, I., Asymptotic stability of heteroclinic cycles in systems with symmetry, Ergodic Theory Dyn. Syst., 15, 1, 121-147 (1995) · Zbl 0818.58025 · doi:10.1017/S0143385700008270
[23] Labouriau, IS; Rodrigues, AAP, On Takens’ last problem: tangencies and time averages near heteroclinic networks, Nonlinearity, 30, 5, 1876 (2017) · Zbl 1370.34073 · doi:10.1088/1361-6544/aa64e9
[24] Lohse, A., Unstable attractors: existence and stability indices, Dyn. Syst., 30, 3, 324-332 (2015) · Zbl 1358.37057 · doi:10.1080/14689367.2015.1041879
[25] Melbourne, I., An example of a nonasymptotically stable attractor, Nonlinearity, 4, 3, 835 (1991) · Zbl 0737.58043 · doi:10.1088/0951-7715/4/3/010
[26] Milnor, J.: On the concept of attractor. In: The Theory of Chaotic Attractors, pp. 243-264. Springer (1985) · Zbl 0595.58028
[27] Palis, J., de Melo, W.: Local stability. In: Geometric Theory of Dynamical Systems, pp. 39-90. Springer (1982)
[28] Peixe, T.: Lotka-Volterra Systems and Polymatrix Replicators. ProQuest LLC, Ann Arbor. Thesis (Ph.D.)-Universidade de Lisboa (Portugal) (2015) · Zbl 1360.91028
[29] Peixe, T.: Permanence in polymatrix replicators. J. Dyn. Games (2019) · Zbl 1473.34036
[30] Peixe, T.; Rodrigues, A., Persistent strange attractors in 3d polymatrix replicators, Physica D, 438 (2022) · Zbl 1501.37035 · doi:10.1016/j.physd.2022.133346
[31] Podvigina, O., Stability and bifurcations of heteroclinic cycles of type z, Nonlinearity, 25, 6, 1887 (2012) · Zbl 1259.37015 · doi:10.1088/0951-7715/25/6/1887
[32] Podvigina, O.; Ashwin, P., On local attraction properties and a stability index for heteroclinic connections, Nonlinearity, 24, 3, 887 (2011) · Zbl 1219.37021 · doi:10.1088/0951-7715/24/3/009
[33] Podvigina, O.; Chossat, P., Simple heteroclinic cycles, Nonlinearity, 28, 4, 901 (2015) · Zbl 1351.34050 · doi:10.1088/0951-7715/28/4/901
[34] Podvigina, O.; Chossat, P., Asymptotic stability of pseudo-simple heteroclinic cycles in \(\mathbb{R}^4 \), J. Nonlinear Sci., 27, 1, 343-375 (2017) · Zbl 1386.34083 · doi:10.1007/s00332-016-9335-4
[35] Podvigina, O.; Castro, SBSD; Labouriau, IS, Stability of a heteroclinic network and its cycles: a case study from Boussinesq convection, Dyn. Syst., 34, 1, 157-193 (2019) · Zbl 1411.34079 · doi:10.1080/14689367.2018.1486807
[36] Podvigina, O.; Castro, SBSD; Labouriau, IS, Asymptotic stability of robust heteroclinic networks, Nonlinearity, 33, 4, 1757 (2020) · Zbl 1443.37023 · doi:10.1088/1361-6544/ab6817
[37] Postlethwaite, CM; Rucklidge, AM, Stability of cycling behaviour near a heteroclinic network model of Rock-Paper-Scissors-Lizard-Spock, Nonlinearity, 35, 1702 (2021) · Zbl 1495.37020 · doi:10.1088/1361-6544/ac3560
[38] Rodrigues, AAP, Persistent switching near a heteroclinic model for the geodynamo problem, Chaos Solitons Fractals, 47, 73-86 (2013) · Zbl 1258.86008 · doi:10.1016/j.chaos.2012.12.005
[39] Rodrigues, AAP, Attractors in complex networks, Chaos Interdiscip. J. Nonlinear Sci., 27, 10 (2017) · Zbl 1388.37081 · doi:10.1063/1.4996883
[40] Ruelle, D., Elements of Differentiable Dynamics and Bifurcation Theory (2014), Elsevier · Zbl 0684.58001
[41] Smith, JM; Price, GR, The logic of animal conflict, Nature, 246, 5427, 15-18 (1973) · Zbl 1369.92134 · doi:10.1038/246015a0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.