×

Hamiltonian evolutionary games. (English) Zbl 1334.91017

Summary: We introduce a class of o.d.e.’s that generalizes to polymatrix games the replicator equations on symmetric and asymmetric games. We also introduce a new class of Poisson structures on the phase space of these systems, and characterize the corresponding subclass of Hamiltonian polymatrix replicator systems. This extends known results for symmetric and asymmetric replicator systems.

MSC:

91A22 Evolutionary games
91A25 Dynamic games
37C10 Dynamics induced by flows and semiflows
34G20 Nonlinear differential equations in abstract spaces

References:

[1] E. Akin, Evolutionary dynamics of zero-sum games,, J. Math. Biol., 20, 231 (1984) · Zbl 0569.92014 · doi:10.1007/BF00275987
[2] P. Duarte, Dynamics of the attractor in the Lotka-Volterra equations,, J. Differential Equations, 149, 143 (1998) · Zbl 0912.34049 · doi:10.1006/jdeq.1998.3443
[3] J.-P. Dufour, <em>Poisson Structures and Their Normal Forms</em>,, Progress in Mathematics (2005) · Zbl 1082.53078
[4] I. Eshel, Coevolutionary instability and mixed Nash solutions,, J. Math. Biol., 18, 123 (1983) · Zbl 0531.92024 · doi:10.1007/BF00280661
[5] R. L. Fernandes, The momentum map in Poisson geometry,, Amer. J. Math., 131, 1261 (2009) · Zbl 1180.53083 · doi:10.1353/ajm.0.0068
[6] J. Hofbauer, Evolutionary dynamics for bimatrix games: A Hamiltonian system?,, J. Math. Biol., 34, 675 (1996) · Zbl 0845.92016 · doi:10.1007/BF02409754
[7] J. Hofbauer, On the occurrence of limit cycles in the Volterra-Lotka equation,, Nonlinear Anal., 5, 1003 (1981) · Zbl 0477.92011 · doi:10.1016/0362-546X(81)90059-6
[8] J. Hofbauer, <em>Evolutionary games and population dynamics</em>,, Cambridge University Press (1998) · Zbl 0914.90287 · doi:10.1017/CBO9781139173179
[9] J. T. Howson, Equilibria of polymatrix games,, Management Sci., 18, 312 · Zbl 0228.90058
[10] J. Maynard Smith, <em>Evolution and the Theory of Games</em>,, Cambridge University Press (1982) · Zbl 0526.90102
[11] J. Nash, Non-cooperative games,, Ann. of Math. (2), 54, 286 (1951) · Zbl 0045.08202 · doi:10.2307/1969529
[12] G. Palm, Evolutionary stable strategies and game dynamics for \(n\)-person games,, J. Math. Biol., 19, 329 (1984) · Zbl 0535.90107 · doi:10.1007/BF00277103
[13] A. M. Perelomov, <em>Integrable Systems of Classical Mechanics and Lie algebras. Vol. I</em>,, Birkhäuser Verlag (1990) · Zbl 0717.70003 · doi:10.1007/978-3-0348-9257-5
[14] M. Plank, Bi-Hamiltonian systems and Lotka-Volterra equations: A three-dimensional classification,, Nonlinearity, 9, 887 (1996) · Zbl 0895.58023 · doi:10.1088/0951-7715/9/4/004
[15] M. Plank, Hamiltonian structures for the \(n\)-dimensional Lotka-Volterra equations,, J. Math. Phys., 36, 3520 (1995) · Zbl 0842.34012 · doi:10.1063/1.530978
[16] M. Plank, Some qualitative differences between the replicator dynamics of two player and \(n\) player games,, Nonlinear Anal., 30, 1411 (1997) · Zbl 0892.90193 · doi:10.1016/S0362-546X(97)00202-2
[17] R. Redheffer, A new class of Volterra differential equations for which the solutions are globally asymptotically stable,, J. Differential Equations, 82, 251 (1989) · Zbl 0702.34043 · doi:10.1016/0022-0396(89)90133-2
[18] R. Redheffer, Solution of the stability problem for a class of generalized Volterra prey-predator systems,, J. Differential Equations, 52, 245 (1984) · Zbl 0539.34043 · doi:10.1016/0022-0396(84)90179-7
[19] K. Ritzberger, Evolutionary selection in normal-form games,, Econometrica, 63, 1371 (1995) · Zbl 0841.90127 · doi:10.2307/2171774
[20] W. H. Sandholm, <em>Population Games and Evolutionary Dynamics</em>,, MIT Press (2010) · Zbl 1208.91003
[21] P. Schuster, Self-regulation of behaviour in animal societies. III. Games between two populations with self-interaction,, Biol. Cybernet., 40, 17 (1981) · Zbl 0465.92018 · doi:10.1007/BF00326677
[22] V. Volterra, <em>Leçons Sur La Théorie Mathématique de la Lutte Pour La Vie</em>,, Éditions Jacques Gabay (1990) · JFM 57.0466.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.