×

Symmetry solutions and conserved vectors for a generalized short pulse equation. (English) Zbl 1490.35019

Summary: This work investigates a generalized short pulse equation. The short pulse equation governs the generation of ultra short optical pulses in nonlinear media. Firstly, we find its Lie symmetries and later utilize them to secure an optimal system of one-dimensional subalgebras (OSOSs). Thereafter, invariant solutions are determined under each element of the OSOSs. Three different cases for the constants \(a\) and \(b\) in the equation are discussed, viz., \(a\) and \(b\) not zero simultaneously; \(a=0\) but \(b\neq 0\); \(a\neq 0\) but \(b=0\). We also depict graphically the 3D and 2D representations of some of the gained solutions for the underlying equation. Secondly, by invoking the general multiplier method we acquire conserved vectors for the generalized short pulse equation.

MSC:

35B06 Symmetries, invariants, etc. in context of PDEs
35C05 Solutions to PDEs in closed form
35L65 Hyperbolic conservation laws

Software:

PSEUDO

References:

[1] M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear evolution equations and inverse scattering, Cambridge University Press, Cambridge, 1991. · Zbl 0762.35001
[2] F. Aboud, A. Nachaoui, Single-rank quasi-Newton methods for the solution of non-linear semiconductor equations, Adv. Math. Models Appl. 5 (2020), 70-79.
[3] R. Beals, M. Rabelo, K. Tenenblat, Bäcklund transformations and inverse scattering solutions for some pseudo-spherical surface equations, Stud. Appl. Math. 81 (1989), 125-151. · Zbl 0697.58059
[4] N. Benoudina, Y. Zhang, C.M. Khalique, Lie symmetry analysis, optimal system, new solitary wave solutions and conservation laws of the Pavlov equation, Commun. Nonlinear Sci. Numer. Simulat. 94 (2021), 105560. · Zbl 1454.35318
[5] F. Bergeron, G. Labelle, P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge University Press, Cambridge, 1998. · Zbl 0888.05001
[6] G.W. Bluman, A.F. Cheviakov, S.C. Anco, Applications of symmetry methods to partial differential equations, Springer, New York, 2010. · Zbl 1223.35001
[7] J.C. Brunelli, The short pulse hierarchy, J. Math. Phys. 46 (2005), Article ID 123507. · Zbl 1111.35056
[8] J.C. Brunelli, The bi-Hamiltonian structure of the short pulse equation, Phys. Lett. A 353 (2006), 475-478. · Zbl 1181.37094
[9] M.S. Bruzón, M.L. Gandarias, Traveling wave solutions of the K(m, n) equation with generalized evolution, Math. Meth. Appl. Sci. 41 (2018), 5851-5857. · Zbl 1402.35241
[10] H. Bulut, A.N. Akkilic, B.J. Khalid, Soliton solutions of Hirota equation and Hirota-Maccari system by the (m + G ′ G )−expansion method, Adv. Math. Models Appl. 6 (2021), 22-30.
[11] Y. Chung, C.K. Jones, T. Schäfer, C.E. Wayne, Ultra-short pulses in linear and nonlinear media, Nonlinearity 18 (2005), 1351-1374. · Zbl 1125.35412
[12] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth, On the Lambert W Function, Adv. Comput. Math. 5 (1996), 329-359. · Zbl 0863.65008
[13] C.J. Cui, X.Y. Tang, Y.J. Cui, New variable separation solutions and wave interac-tions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Appl. Math. Lett. 102 (2020), 106109. · Zbl 1443.37052
[14] P. Cui, Bilinear form and exact solutions for a new extended (2+1)-dimensional Boussinesq equation, Results Phys. 22 (2021), 103919.
[15] S.T. Demiray, S. Duman, MTEM to the (2+1)-dimensional ZK equation and Chafee-Infante equation, Adv. Math. Models Appl. 6 (2021), 63-70.
[16] X.X. Du, B. Tian, Q.X. Qu, Y.Q. Yuan, X.H. Zhao, Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma, Chaos Solitons Fract. 134 (2020), 109709. · Zbl 1483.35177
[17] X. Duan, J. Lu, The exact solutions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Results Phys. 21 (2021), 103820.
[18] B.F. Feng, An integrable coupled short pulse equation, J. Phys. A Math. Gen. 45 (2012), Article ID 085202, 14 pages. · Zbl 1242.78022
[19] B.F. Feng, K.I. Maruno, Y. Ohta, Integrable discretizations of the short pulse equa-tion, J. Phys. A Math. Theor. 43 (2010), Article ID 085203. · Zbl 1189.78051
[20] M.L. Gandarias, M.R. Duran, C.M. Khalique, Conservation laws and travelling wave solutions for double dispersion equations in (1+1) and (2+1) dimensions, Symmetry 12 (2020), 950.
[21] X.Y. Gao, Mathematical view with observational/experimental consideration on cer-tain (2+1)-dimensional waves in the cosmic/laboratory dusty plasmas, Appl. Math. Lett. 91 (2019), 165-172. · Zbl 1445.76101
[22] X.Y. Gao, Y.J. Guo, W.R. Shan, Water-wave symbolic computation for the Earth, Enceladus and Titan: The higher-order Boussinesq-Burgers system, auto and non-auto-Bäcklund transformations, Appl. Math. Lett. 104 (2020), 106170. · Zbl 1437.86001
[23] Q. Guo, J. Liu, New exact solutions to the nonlinear Schrödinger equation with variable coefficients, Results Phys. 16 (2020), 102857.
[24] M. Han, L. Zhang, Y. Wang, C.M. Khalique, The effects of the singular lines on the traveling wave solutions of modified dispersive water wave equations, Nonlinear Anal. Real World Appl. 47 (2019), 236-250. · Zbl 1409.35051
[25] R. Hirota, The direct method in soliton theory, Cambridge University Press, Cam-bridge, 2004. · Zbl 1099.35111
[26] A.N.W. Hone, V. Novikov, J.P. Wang, Generalizations of the short pulse equation, Lett. Math. Phys. 108 (2018), 927-947. · Zbl 1393.37076
[27] P.E. Hydon, Symmetry methods for differential equations, Cambridge University Press,Cambridge, NY, 2000. · Zbl 1035.35005
[28] N.H. Ibragimov, Elementary Lie group analysis and ordinary differential equations, John Wiley & Sons, Chichester, NY, 1999. · Zbl 1047.34001
[29] N.H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl. 333 (2007), 311-328. · Zbl 1160.35008
[30] Y. Kai, B. Zheng, N. Yang, W. Xu, Exact single traveling wave solutions to gener-alized (2+1)-dimensional Gardner equation with variable coefficients, Results Phys. 15 (2019), 102527.
[31] C.M. Khalique, S.A. Abdallah, Coupled Burgers equations governing polydispersive sedimentation; a Lie symmetry approach, Results Phys. 16 (2020), 102967.
[32] C.M. Khalique, K. Plaatjie, I. Simbanefayi, Exact solutions of equal-width equation and its conservation laws, Open Phys. 17 (2019), 505-511.
[33] A.K. Khanmamedov, M.G. Makhmudova, N.F. Gafarova, (2021). Special solutions of the Stark equation, Adv. Math. Models Appl. 6 (2021), 59-62.
[34] N.A. Kudryashov, Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos Solitons Fract. 24 (2005), 1217-1231. · Zbl 1069.35018
[35] N.A. Kudryashov, One method for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simulat. 17 (2012), 2248-2253. · Zbl 1250.35055
[36] R.J. Leveque, Numerical methods for conservation laws, second ed., Birkhäuser-Verlag, Basel, 1992. · Zbl 0847.65053
[37] S. Lie, Vorlesungenüber Differentialgleichungen mit bekannten infinitesimalen Transformationen. Leipzig: (Bearbeited und herausgegeben von Dr. G. Scheffers), B. G. Teubner, 1891. · JFM 23.0351.01
[38] S. Lie, Zur allgemeine Theorie der partiellen Differentialgleichungen beliebiger Ord-nung, Leipzig. Ber., 1 (1895), 53-128. Reprinted in Ges. Abhandl., Bd. 4, 320-384. English translation “General theory of partial differential equations of an arbitrary order” is available in the book Lie group analysis: Classical heritage, ed. N.H. Ibrag-imov, ALGA Publications, Karlskrona, Sweden, (2004), 1-63.
[39] H. Liu, J. Li, Lie symmetry analysis and exact solutions for the short pulse equation, Nonlinear Anal-Theor. 71 (2009), 2126-2133. · Zbl 1244.35003
[40] Y. Liu, D. Pelinovsky, A. Sakovich, Wave breaking in the short-pulse equation, Dyn. Partial Differ. Equ. 6 (2009), 291-310. · Zbl 1190.35061
[41] J. Manafian, S. Heidari, Periodic and singular kink solutions of the Hamiltonian amplitude equation, Adv. Math. Models Appl. 4 (2019), 134-149.
[42] Y. Matsuno, Multiloop soliton and multibreather solutions of the short pulse model equation, J. Phys. Soc. Japan 76 (2007), Article ID 084003.
[43] Y. Matsuno, Periodic solutions of the short pulse model equation, J. Math. Phys. 49 (2008), Article ID 073508. · Zbl 1152.81554
[44] Y. Matsuno, Integrable multi-component generalization of a modified short pulse equation, J. Math. Phys. 57 (2016), Article ID 111507. · Zbl 1354.78011
[45] T. Motsepa, C.M. Khalique, Closed-form solutions and conserved vectors of the (3+1)-dimensional negative-order KdV equation, Adv. Math. Models Appl. 5 (2020), 7-18.
[46] T. Motsepa, C.M. Khalique, M.L. Gandarias, Symmetry analysis and conservation laws of the Zoomeron equation, Symmetry 9 (2017), 27. · Zbl 1423.35344
[47] A. Nachaoui, M. Nachaoui, B. Gasimov, Parallel numerical computation of an an-alytical method for solving an inverse problem, Adv. Math. Models Appl. 6 (2021), 162-173.
[48] E. Noether, Invariante variationsprobleme, Nachr. v. d. Ges. d. Wiss. zu Göttingen 2 (1918), 235-257. · JFM 46.0770.01
[49] P.J. Olver, Applications of Lie groups to differential equations, second ed., Springer-Verlag, Berlin, 1993. · Zbl 0785.58003
[50] E. J. Parkes, Some periodic and solitary travelling-wave solutions of the short-pulse equation, Chaos Solitons Fractals 38 (2008), 154-159. · Zbl 1142.35575
[51] E.J. Parkes, A note on loop-soliton solutions of the short-pulse equation, Phys. Lett. A 374 (2010), 4321-4323. · Zbl 1238.35119
[52] D. Pelinovsky, A. Sakovich, Global well-posedness of the short-pulse and sine-Gordon equations in energy space, Commun. Partial. Differ. Equ. 35 (2010), 613-629. · Zbl 1204.35010
[53] M.L. Rabelo, On equations which describe pseudo-spherical surfaces, Stud. Appl. Math. 81 (1989), 221-248. · Zbl 0696.35111
[54] S. Sakovich, Transformation and integrability of a generalized short pulse equation, Commun. Nonlinear Sci. Numer. Simul. 39 (2016), 21-28. · Zbl 1510.35184
[55] S. Sakovich, Integrability of a generalized short pulse equation revisited, Research in Applied Mathematics 2 (2018), 101272, 11 pages.
[56] A. Sakovich, S. Sakovich, The short pulse equation is integrable, J. Phys. Soc. Japan 74 (2005), 239-241. · Zbl 1067.35115
[57] A. Sakovich, S. Sakovich, Solitary wave solutions of the short pulse equation, J. Phys. A Math. Gen. 39 (2006), L361-L367. · Zbl 1092.81531
[58] A. Sakovich, S. Sakovich, On transformations of the Rabelo equations, Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 3 (2007), Article No. 086. · Zbl 1136.35094
[59] T. Schäfer, C. E. Wayne, Propagation of ultra-short optical pulses in cubic nonlinear media, Physica D: Nonlinear Phenomena 196 (2004), 90-105. · Zbl 1054.81554
[60] H. Stephani, Differential Equations : their solutions using symmetries, Cambridge University Press, Cambridge, 1989. · Zbl 0704.34001
[61] M. Wang, X. Li, J. Zhang, The (G ′ /G)− expansion method and travelling wave solutions for linear evolution equations in mathematical physics, Phys. Lett. A 24 (2005), 1257-1268. · Zbl 1092.37054
[62] M. Wang, Y. Zhou, Z. Li, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A 216 (1996), 67-75. · Zbl 1125.35401
[63] Y. Yildirim, E. Yasar, An extended Korteweg-de Vries equation: multi-soliton solu-tions and conservation laws, Nonlinear Dyn. 90 (2017), 1571-1579. · Zbl 1380.35139
[64] L. Zhang, C.M. Khalique, Classification and bifurcation of a class of second-order ODEs and its application to nonlinear PDEs, Discrete Cont. Dyn-S 11 (2018), 777-790.
[65] C.R. Zhang, B. Tian, Q.X. Qu, L. Liu, H.Y. Tian, Vector bright solitons and their interactions of the couple Fokas-Lenells system in a birefringent optical fiber, Z. Angew. Math. Phys. 71 (2020), 1-19. · Zbl 1508.35164
[66] Chaudry Masood Khalique International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical Sciences, North-West University, Mafikeng Cam-pus, Private Bag X 2046, Mmabatho 2735, Republic of South Africa,
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.