×

Mathematical view with observational/experimental consideration on certain \((2+1)\)-dimensional waves in the cosmic/laboratory dusty plasmas. (English) Zbl 1445.76101

Summary: Plasmas are believed to be possibly the most abundant form of ordinary matter in the Universe, supporting a variety of the wave phenomena, while a dusty plasma is of interest as a non-Hamiltonian system of interacting particles. In this Letter, symbolic computation on an observationally/experimentally-supported \((2+1)\)-dimensional generalized variable-coefficient Kadomtsev-Petviashvili-Burgers-type equation is done, for certain dust-acoustic, electron-acoustic, positron-acoustic, magneto-acoustic, dust-magneto-acoustic, ion-acoustic, dust-ion-acoustic and/or quantum-dust-ion-acoustic waves in one of the cosmic/laboratory dusty plasmas. Auto-Bäcklund transformation and families of the solitonic solutions are obtained, for the electrostatic wave potential, perturbation of the magnitude of the magnetic field, fluctuation of electron or ion density, or radial-direction component of the velocity of ions or dust particles, relying on such plasma coefficient functions as the nonlinearity, dispersion, dusty-fluid-viscosity/Burgers-dissipation, geometric-effect and diffraction/transverse-perturbation coefficients. Shock structures presented in this Letter are very close to the experimental results previously reported. Future plasma observations/experiments might verify some other effects offered by our analytic results with respect to those plasma coefficient functions.

MSC:

76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76T15 Dusty-gas two-phase flows
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
Full Text: DOI

References:

[1] ”Plasma (physics)”, Wikipedia, https://en.wikipedia.org/wiki/Plasma_(physics); ”Plasma (physics)”, Wikipedia, https://en.wikipedia.org/wiki/Plasma_(physics) · Zbl 0098.22705
[2] ”Astrophysical plasma”, Wikipedia, https://en.wikipedia.org/wiki/Astrophysical_plasma; ”Astrophysical plasma”, Wikipedia, https://en.wikipedia.org/wiki/Astrophysical_plasma
[3] ”Waves in plasmas”, Wikipedia, https://en.wikipedia.org/wiki/Waves_in_plasmas; ”Waves in plasmas”, Wikipedia, https://en.wikipedia.org/wiki/Waves_in_plasmas
[4] ”Cosmic dust”, Wikipedia, https://en.wikipedia.org/wiki/Cosmic_dust; ”Cosmic dust”, Wikipedia, https://en.wikipedia.org/wiki/Cosmic_dust
[5] Tsytovich, V. N.; Morfill, G. E.; Vladimirov, S. V.; Thomas, H. M., (Elementary Physics of Complex Plasmas. Elementary Physics of Complex Plasmas, Lect. Notes Phys., vol. 731 (2008), Springer: Springer Berlin); Dikalyuk, A. S.; Surzhikov, S. T., High Temp., 50, 571 (2012) · Zbl 1151.82001
[6] Zaghbeer, S. K.; El-Shewy, E. K.; El-Hanbaly, A. M.; Salah, H. H.; Sheta, N. H.; Elgarayh, A., Adv. Space Res., 62, 1728 (2018)
[7] Pakzad, H. R., Indian J. Phys., 84, 867 (2010)
[8] Arshad, K.; Lazar, M.; Poedts, S., Planet. Space Sci., 156, 139 (2018)
[9] Wang, Y. Y.; Zhang, J. F., J. Phys. A, 39, 7161 (2006) · Zbl 1122.76101
[10] Xue, J. K., Eur. Phys. J. D, 26, 211 (2003)
[11] Wang, Y. Y.; Zhang, J. F., Commun. Theor. Phys., 46, 313 (2006)
[12] Sahu, B.; Tribeche, M., Astrophys. Space Sci., 338, 259 (2012)
[13] Gao, X. Y., Europhys. Lett., 110, 15002 (2015)
[14] Sahu, B.; Tribeche, M., Phys. Plasmas, 19, 022304 (2012)
[15] Sahu, B.; Tribeche, M., Adv. Space Res., 51, 2353 (2013)
[16] Pakzad, H. R.; Javidan, K.; Tribeche, M., Astrophys. Space Sci., 352, 185 (2014)
[17] Sahu, B., Phys. Scr., 82, 065504 (2010) · Zbl 1217.82083
[18] Shah, A.; Saeed, R.; Noaman-ul-Haq, M., Phys. Plasmas, 17, 072307 (2010)
[19] Eslami, P.; Pakzad, H. R.; Mottaghizadeh, M., J. Fusion Energy, 31, 617 (2012)
[20] Hussain, S.; Akhtar, N.; Mahmood, S., Astrophys. Space Sci., 343, 329 (2013) · Zbl 1286.76157
[21] Seadawy, A. R.; El-Rashidy, K., Results Phys., 8, 1216 (2018)
[22] Han, J. N.; Luo, J. H.; Li, J. X., Astrophys. Space Sci., 349, 305 (2014)
[23] Shan, S. A.; Akhtar, N.; Ali, S., Astrophys. Space Sci., 351, 181 (2014)
[24] Shan, S. A.; Ali, S.; Aman-ur-Rehman, Astrophys. Space Sci., 353, 151 (2014)
[25] Shahmansouri, M.; Lee, M. J.; Jung, Y. D., Phys. Plasmas, 25, 093701 (2018)
[26] Shukla, P. K.; Silin, V. P., Phys. Scr., 45, 508 (1992)
[27] Moslem, W. M., Chaos Solitons Fractals, 28, 994 (2006) · Zbl 1096.37055
[28] Masood, W.; Siddiq, M.; Nargis, S.; Mirza, A. M., Phys. Plasmas, 16, 013705 (2009)
[29] Jehan, N.; Mirza, A. M.; Salahuddin, M., Phys. Plasmas, 18, 052307 (2011)
[30] Hussain, S.; Mahmood, S., Astrophys. Space Sci., 342, 117 (2012)
[31] Hussain, S.; Mahmood, S., Phys. Plasmas, 18, 123701 (2011)
[32] Tribeche, M.; Houili, H.; Zerguini, T. H., Phys. Plasmas, 9, 419 (2002)
[33] dos Santos, M. S.; Ziebell, L. F.; Gaelzer, R., Astrophys. Space Sci., 362, 18 (2017)
[34] Feldman, W. C.; Anderson, R. C.; Bame, S. J.; Gary, S. P.; Gosling, J. T.; McComas, D. J.; Thomsen, M. F.; Paschmann, G.; Hoppe, M. M., J. Geophys. Res.-Space Phys., 88, 96 (1983)
[35] Lundin, R.; Zakharov, A.; Pellinen, R.; Borg, H.; Hultqvist, B.; Pissarenko, N.; Dubinin, E. M.; Barabash, S. W.; Liede, I.; Koskinen, H., Nature, 341, 609 (1989)
[36] Futaana, Y.; Machida, S.; Saito, Y.; Saito, Y.; Matsuoka, A.; Hayakawa, H., J. Geophys. Res., 108, 1025 (2003)
[37] Ergun, R. E.; Carlson, C. W.; McFadden, J. P.; Mozer, F. S.; Delory, G. T.; Peria, W.; Chaston, C. C.; Temerin, M.; Roth, I.; Muschietti, L.; Elphic, R.; Strangeway, R.; Pfaff, R.; Cattell, C. A.; Klumpar, D.; Shelley, E.; Peterson, W.; Moebius, E.; Kistler, L., Geophys. Res. Lett., 25, 2041 (1998)
[38] Barkan, A.; Merlino, R. L.; D’Angelo, N., Phys. Plasmas, 2, 3563 (1995)
[39] Thompson, C.; Barkan, A.; Merlino, R. L.; D’Angelo, N., IEEE Trans. Plasma Sci., 27, 146 (1999)
[40] Barkan, A.; D’Angelo, N.; Merlino, R. L., Planet. Space Sci., 44, 239 (1996)
[41] Havnes, O., (Bharuthram, R.; Hellberg, M. A.; Shukla, P. K.; Verheest, F., Dusty Plasmas in the New Millennium (2002), AIP: AIP Melville)
[42] Goertz, C. K., Rev. Geophys., 27, 271 (1989)
[43] Mendis, D. A.; Rosenberg, M., Annu. Rev. Astron. Astrophys., 32, 419 (1994)
[44] Mamun, A. A.; Cairns, R. A.; Shukla, P. K., Phys. Plasmas, 3, 702 (1996)
[45] Wu, X. Y.; Tian, B.; Chai, H. P.; Sun, Y., Mod. Phys. Lett. B, 31, 1750122 (2017); Du, X. X.; Tian, B.; Wu, X. Y.; Yin, H. M.; Zhang, C. R., Eur. Phys. J. Plus, 133, 378 (2018); Hu, C. C.; Tian, B.; Wu, X. Y.; Yuan, Y. Q.; Du, Z., Eur. Phys. J. Plus, 133, 40 (2018)
[46] Wu, X. Y.; Tian, B.; Yin, H. M.; Du, Z., Nonlinear Dynam., 93, 1635 (2018); Zhao, X. H.; Tian, B.; Liu, D. Y.; Wu, X. Y.; Chai, J.; Guo, Y. J., Superlattices Microstruct., 100, 587 (2016); Du, Z.; Tian, B.; Chai, H. P.; Yuan, Y. Q., Commun. Nonlinear Sci. Numer. Simul., 67, 49 (2019); Du, Z.; Tian, B.; Wu, X. Y.; Liu, L.; Sun, Y., Superlattices Microstruct., 107, 310 (2017); Yuan, Y. Q.; Tian, B.; Liu, L.; Chai, H. P., Superlattices Microstruct., 111, 134 (2017); Jin, P.; Bouman, C. A.; Sauer, K. D., IEEE Trans. Comput. Imaging, 1, 200 (2015)
[47] Ibrahim, R. S.; El-Kalaawy, O. H., Phys. Plasmas, 13, 102305 (2006)
[48] Liang, Z. F.; Tang, X. Y., Chin. Phys. Lett., 27, 030201 (2010)
[49] Lei, Y.; Yang, D., Chin. Phys. B, 22, 040202 (2013)
[50] Wu, X. Y.; Tian, B.; Xie, X. Y.; Chai, J., Superlattice. Microstruct., 101, 117 (2017); Yin, H. M.; Tian, B.; Zhen, H. L.; Chai, J.; Liu, L.; Sun, Y., J. Mod. Opt., 64, 725 (2017)
[51] Liu, L.; Tian, B.; Yuan, Y. Q.; Du, Z., Phys. Rev. E, 97, 052217 (2018); Zhao, X. H.; Tian, B.; Chai, J.; Wu, X. Y.; Guo, Y. J., Eur. Phys. J. Plus, 132, 192 (2018); Zhao, X. H.; Tian, B.; Guo, Y. J., Optik, 132, 417 (2017); Yin, H. M.; Tian, B.; Zhen, H. L.; Chai, J.; Wu, X. Y., Mod. Phys. Lett. B, 30, 1650306 (2016); Yuan, Y. Q.; Tian, B.; Liu, L.; Wu, X. Y.; Sun, Y., J. Math. Anal. Appl., 460, 476 (2018); Zhang, C. R.; Tian, B.; Wu, X. Y.; Yuan, Y. Q.; Du, X. X., Phys. Scr., 93, 095202 (2018)
[52] Liu, S. D.; Liu, S. K., Sci. Chin. A, 35, 576 (1992) · Zbl 0759.76036
[53] Xue, J. K.; Zhang, L. P., Chaos Solitons Fractals, 32, 592 (2007); Mahmood, S.; Ur-Rehman, H., Phys. Plasmas, 17, 072305 (2010); Hussain, S.; Mahmood, S., Phys. Plasmas, 18, 052308 (2011)
[54] Zhang, W. G.; Zhao, Y.; Teng, X. Y., Acta Math. Appl. Sin., 28, 305 (2012) · Zbl 1361.34029
[55] Nakamura, Y.; Bailung, H.; Shukla, P. K., Phys. Rev. Lett., 83, 1602 (1999)
[56] Shukla, P. K.; Mamun, A. A., New J. Phys., 5 (2003), 17.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.