×

Generalizations of the short pulse equation. (English) Zbl 1393.37076

The authors consider a wide class of second-order nonlinear partial differential equations which reduces to the short pulse equation for specific choices of the coefficients: \[ u_{xt}=u+c_0 u^2+c_1 uu_x+ c_2 uu_{xx}+c_3u_x^2 +d_0u^3+d_1u^2u_x+d_2u^2u_{xx}+d_3uu_x^2. \] Based on previous results on the integrability of the short pulse equation, the authors analyze the integrability of the above general equation. They prove that if higher symmetries can be computed, then the above general equation gives rise to a list of integrable equations. For each listed equation, they give Hamiltonian structures, conservation laws and Lax representations.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35G20 Nonlinear higher-order PDEs
37K05 Hamiltonian structures, symmetries, variational principles, conservation laws (MSC2010)

References:

[1] Beals, R., Rabelo, M., Tenenblat, K.: Bäcklund transformations and inverse scattering solutions for some pseudospherical surface equations. Stud. Appl. Math. 81, 125-151 (1989) · Zbl 0697.58059 · doi:10.1002/sapm1989812125
[2] Brunelli, J.C.: The bi-Hamiltonian structure of the short pulse equation. Phys. Lett. A 353, 475-478 (2006) · Zbl 1181.37094 · doi:10.1016/j.physleta.2006.01.009
[3] Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661-1664 (1993) · Zbl 0972.35521 · doi:10.1103/PhysRevLett.71.1661
[4] Calogero, F., Degasperis, A.: Reduction technique for matrix nonlinear evolution equations solvable by the spectral transform. J. Math. Phys. 22, 23-31 (1981) · Zbl 0485.35076 · doi:10.1063/1.524750
[5] Common, A.K., Musette, M.: Two discretisations of the Ermakov-Pinney equation. Phys. Lett. A 235, 574-580 (1997) · doi:10.1016/S0375-9601(97)00649-X
[6] Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch. Ration. Mech. Anal. 192, 165-186 (2009) · Zbl 1169.76010 · doi:10.1007/s00205-008-0128-2
[7] Degasperis, A.; Procesi, M.; Degasperis, A. (ed.); Gaeta, G. (ed.), Asymptotic integrability, 23-37 (1999), Singapore · Zbl 0963.35167
[8] Degasperis, A., Holm, D.D., Hone, A.N.W.: A new integrable equation with peakon solutions. Theor. Math. Phys. 133, 1463-1474 (2002) · doi:10.1023/A:1021186408422
[9] Degasperis, A.; Holm, DD; Hone, ANW; Ablowitz, MJ (ed.); Boiti, M. (ed.); Pempinelli, F. (ed.); Prinari, B. (ed.), Integrable and non-integrable equations with peakons, 37-43 (2003), Singapore · Zbl 1053.37039 · doi:10.1142/9789812704467_0005
[10] Dullin, H.R., Gottwald, G.A., Holm, D.D.: Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves. Fluid Dyn. Res. 33, 73-95 (2003) · Zbl 1032.76518 · doi:10.1016/S0169-5983(03)00046-7
[11] Feng, B.F.: An integrable coupled short pulse equation. J. Phys. A Math. Theor. 45, 085202 (2012) · Zbl 1242.78022 · doi:10.1088/1751-8113/45/8/085202
[12] Feng, B.F., Maruno, K., Ohta, Y.: On the τ-functions of the reduced Ostrovsky equation and the A2(2) two-dimensional Toda system. J. Phys. A Math. Theor. 45, 355203 (2012) · Zbl 1381.37081 · doi:10.1088/1751-8113/45/35/355203
[13] Feng, B.F., Maruno, K., Ohta, Y.: Integrable semi-discretizations of the reduced Ostrovsky equation. J. Phys. A Math. Theor. 48, 135203 (2015) · Zbl 1312.37039 · doi:10.1088/1751-8113/48/13/135203
[14] Fokas, A.S.: A symmetry approach to exactly solvable evolution equations. J. Math. Phys. 21, 1318-1325 (1980) · Zbl 0455.35109 · doi:10.1063/1.524581
[15] Harvey, C.N., Gonoskov, A., Ilderton, A., Marklund, M.: Quantum quenching of radiation losses in short laser pulses. Phys. Rev. Lett. 118, 105004 (2017) · doi:10.1103/PhysRevLett.118.105004
[16] Hlavaty, L.: Painlevé analysis of the Calogero-Degasperis-Fokas equation. Phys. Lett. A 113, 177-178 (1985) · doi:10.1016/0375-9601(85)90133-1
[17] Holm, D.D., Staley, M.: Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1+1 nonlinear evolutionary PDE. Phys. Lett. A 308, 437-444 (2003) · Zbl 1010.35066 · doi:10.1016/S0375-9601(03)00114-2
[18] Hone, A.N.W., Wang, J.P.: Prolongation algebras and Hamiltonian operators for peakon equations. Inverse Probl. 19, 129-145 (2003) · Zbl 1020.35096 · doi:10.1088/0266-5611/19/1/307
[19] Hunter, J.K., Saxton, R.: Dynamics of director fields. SIAM J. Appl. Math. 51, 1498-1521 (1991) · Zbl 0761.35063 · doi:10.1137/0151075
[20] Hunter, J.K., Zheng, Y.: On a completely integrable nonlinear hyperbolic variational equation. Physica D 79, 361-386 (1994) · Zbl 0900.35387 · doi:10.1016/S0167-2789(05)80015-6
[21] Lenells, J.: The Hunter-Saxton equation describes the geodesic flow on a sphere. J. Geom. Phys. 57, 2049-2064 (2007) · Zbl 1125.35085 · doi:10.1016/j.geomphys.2007.05.003
[22] Mikhailov, A.V., Novikov, V.S.: Perturbative symmetry approach. J. Phys. A Math. Gen. 35, 4775-4790 (2002) · Zbl 1039.35008 · doi:10.1088/0305-4470/35/22/309
[23] Morrison, A.J., Parkes, E.J., Vakhnenko, V.O.: The N loop soliton solution of the Vakhnenko equation. Nonlinearity 12, 1427-1437 (1999) · Zbl 0935.35129 · doi:10.1088/0951-7715/12/5/314
[24] Ostrovsky, L.A.: Nonlinear internal waves in a rotating ocean. Oceanology 18, 119-125 (1978)
[25] Pelinovsky, D., Schneider, G.: Rigorous justification of the short-pulse equation. Nonlinear Differ. Equ. Appl. 20, 1277-1294 (2013) · Zbl 1268.35089 · doi:10.1007/s00030-012-0208-8
[26] Rabelo, M.L.: On equations which describe pseudospherical surfaces. Stud. Appl. Math. 81, 221-248 (1989) · Zbl 0696.35111 · doi:10.1002/sapm1989813221
[27] Sakovich, A., Sakovich, S.: The short pulse equation is integrable. J. Phys. Soc. Jpn. 74, 239-241 (2005) · Zbl 1067.35115 · doi:10.1143/JPSJ.74.239
[28] Sakovich, S.: Transformation and integrability of a generalized short pulse equation. Commun. Nonlinear Sci. Numer. Simul. 39, 21-28 (2016) · Zbl 1510.35184 · doi:10.1016/j.cnsns.2016.02.031
[29] Schäfer, T., Wayne, C.E.: Propagation of ultra-short optical pulses in cubic nonlinear media. Physica D 196, 90-105 (2004) · Zbl 1054.81554 · doi:10.1016/j.physd.2004.04.007
[30] Vakhnenko, V.O.: Solitons in a nonlinear model medium. J. Phys. A Math. Gen. 25, 4181-4187 (1992) · Zbl 0754.35132 · doi:10.1088/0305-4470/25/15/025
[31] Vakhnenko, V.O., Parkes, E.J.: The two loop soliton solution of the Vakhnenko equation. Nonlinearity 11, 1457-1464 (1998) · Zbl 0914.35115 · doi:10.1088/0951-7715/11/6/001
[32] Vakhnenko, V.O., Parkes, E.J.: The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method. Chaos Solitons Fractals 13, 1819-1826 (2002) · Zbl 1067.37106 · doi:10.1016/S0960-0779(01)00200-4
[33] Wang, J.P.: The Hunter-Saxton equation: remarkable structures of symmetries and conserved densities. Nonlinearity 23, 2009-2028 (2010) · Zbl 1209.37071 · doi:10.1088/0951-7715/23/8/011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.