×

Symmetry analysis and conservation laws of the Zoomeron equation. (English) Zbl 1423.35344

Summary: In this work, we study the \((2 + 1)\)-dimensional Zoomeron equation which is an extension of the famous \((1 + 1)\)-dimensional Zoomeron equation that has been studied extensively in the literature. Using classical Lie point symmetries admitted by the equation, for the first time we develop an optimal system of one-dimensional subalgebras. Based on this optimal system, we obtain symmetry reductions and new group-invariant solutions. Again for the first time, we construct the conservation laws of the underlying equation using the multiplier method.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35B06 Symmetries, invariants, etc. in context of PDEs

References:

[1] Wazwaz, M.; The Tanh and Sine-Cosine Method for Compact and Noncompact Solutions of Nonlinear Klein Gordon Equation; Appl. Math. Comput.: 2005; Volume 167 ,1179-1195. · Zbl 1082.65584
[2] Wazwaz, A.M.; The extended tanh method for the Zakharo-Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms; Commun. Nonlinear Sci. Numer. Simul.: 2008; Volume 13 ,1039-1047. · Zbl 1221.35373
[3] Ablowitz, M.J.; Clarkson, P.A.; ; Soliton, Nonlinear Evolution Equations and Inverse Scattering: Cambridge, UK 1991; . · Zbl 0762.35001
[4] Hirota, R.; ; The Direct Method in Soliton Theory: Cambridge, UK 2004; . · Zbl 1099.35111
[5] Ma, W.X.; Huang, T.; Zhang, Y.; A multiple exp-function method for nonlinear differential equations and its applications; Phys. Scr.: 2010; Volume 82 ,065003. · Zbl 1219.35209
[6] Kudryashov, N.A.; Simplest equation method to look for exact solutions of nonlinear differential equations; Chaos Solitons Fractals: 2005; Volume 24 ,1217-1231. · Zbl 1069.35018
[7] Kudryashov, N.A.; One method for finding exact solutions of nonlinear differential equations; Commun. Nonlinear Sci. Numer. Simul.: 2012; Volume 17 ,2248-2253. · Zbl 1250.35055
[8] Bluman, W.; Cole, J.D.; The general similarity solutions of the heat equation; J. Math. Mech.: 1969; Volume 18 ,1025-1042. · Zbl 0187.03502
[9] Fokas, A.S.; Liu, Q.M.; Generalized conditional symmetries and exact solutions of nonintegrable equations; Theor. Math. Phys.: 1994; Volume 99 ,263-277. · Zbl 0850.35097
[10] Olver, P.J.; ; Applications of Lie Groups to Differential Equations: Berlin, Germany 1993; . · Zbl 0785.58003
[11] Bluman, G.W.; Cheviakov, A.F.; Anco, S.C.; ; Applications of Symmetry Methods to Partial Differential Equations: New York, NY, USA 2010; . · Zbl 1223.35001
[12] Abazari, R.; The solitary wave solutions of Zoomeron equation; Appl. Math. Sci.: 2011; Volume 5 ,2943-2949. · Zbl 1252.35104
[13] Khan, K.; Akbar, M.A.; Salam, M.A.; Islam, M.H.; A note on enhanced (G′/G)-expansion method in nonlinear physics; Ain Shams Eng.: 2014; Volume 5 ,877-884.
[14] Alquran, M.; Al-Khaled, K.; Mathematical methods for a reliable treatment of the (2 + 1)-dimensional Zoomeron equation; Math. Sci.: 2012; Volume 6 ,1-5. · Zbl 1264.35079
[15] Irshad, A.; Mohyud-Din, S.T.; Solitary wave solutions for Zoomeron equation; Walailak J. Sci. Technol.: 2013; Volume 10 ,201-208.
[16] Qawasmeh, A.; Soliton solutions of (2 + 1)-Zoomeron equation and Duffing equation and SRLW equation; J. Math. Comput. Sci.: 2013; Volume 3 ,1475-1480.
[17] Gao, H.; Symbolic computation and new exact travelling solutions for the (2 + 1)-dimensional Zoomeron equation; Int. J. Mod. Nonlinear Theory Appl.: 2014; Volume 3 ,23-28.
[18] Khan, K.; Akbar, M.A.; Traveling wave solutions of the (2 + 1)-dimensional Zoomeron equation and the Burgers equations via the MSE method and the Exp-function method; Ain Shams Eng. J.: 2014; Volume 5 ,247-256.
[19] Morris, R.M.; Leach, P.G.L.; Symmetry reductions and solutions to the Zoomeron equation; Phys. Scr.: 2015; Volume 90 ,015202.
[20] Calogero, F.; Degasperis, A.; Nonlinear Evolution Equations Solvable by the Inverse Spectral Transform Associated with the Matrix Schrödinger Equation; Solitons: Berlin, Germany 1980; ,301-324.
[21] Calogero, F.; Degasperis, A.; ; Spectral Transform and Solitons II: Tools to Solve and Investigate Nonlinear Evolution Equations: Amsterdam, The Netherlands 1982; . · Zbl 0501.35072
[22] Calogero, F.; Degasperis, A.; New integrable PDEs of boomeronic type; J. Phys. A Math. Gen.: 2006; Volume 39 ,8349-8376. · Zbl 1099.35138
[23] Patera, J.; Winternitz, P.; Zassenhaus, H.; Continuous subgroups of the fundamental groups of physics: I. General method and the Poincare group; J. Math. Phys.: 1975; Volume 16 ,1597-1615. · Zbl 0314.22007
[24] Patera, J.; Winternitz, P.; Zassenhaus, H.; Continuous subgroups of the fundamental groups of physics: II. The similitude group; J. Math. Phys.: 1975; Volume 16 ,1616-1624. · Zbl 0314.22008
[25] Boyer, C.P.; Sharp, R.T.; Winternitz, P.; Symmetry breaking interactions for the time dependent Schrödinger equation; J. Math. Phys.: 1976; Volume 17 ,1439-1451. · Zbl 0326.35019
[26] Cherniha, R.; Galilei-invariant non-linear PDEs and their exact solutions; J. Nonlinear Math. Phys.: 1995; Volume 2 ,374-383. · Zbl 0937.35015
[27] Cherniha, R.; Lie Symmetries of nonlinear two-dimensional reaction-diffusion systems; Rept. Math. Phys.: 2000; Volume 46 ,63-76. · Zbl 0977.35062
[28] Fedorchuk, V.; Fedorchuk, V.; On Classification of symmetry reductions for the Eikonal equation; Symmetry: 2016; Volume 8 . · Zbl 1377.35008
[29] Fushchich, W.; Cherniga, R.; Galilei-invariant nonlinear equations of Schrödinger-type and their exact solutions I; Ukr. Math. J.: 1989; Volume 41 ,1161-1167. · Zbl 0702.35232
[30] Cherniha, R.; Exact Solutions of the Multidimensional Schrödinger Equation with Critical Nonlinearity; Group and Analytic Methods in Mathematical Physics, Proceedings of Institute of Mathematics: Kiev, Ukraine 2001; Volume Volume 36 ,304-315. · Zbl 1004.35109
[31] Cherniha, R.; Kovalenko, S.; Lie symmetries and reductions of multidimensional boundary value problems of the Stefan type; J. Phys. A Math. Theor.: 2011; Volume 44 ,485202. · Zbl 1230.35009
[32] Anco, S.C.; Bluman, G.; Direct construction method for conservation laws for partial differential equations Part II: General treatment; Eur. J. Appl. Math.: 2002; Volume 13 ,567-585. · Zbl 1034.35071
[33] Bruzón, M.S.; Garrido, T.M.; de la Rosa, R.; Conservation laws and exact solutions of a Generalized Benjamin-Bona-Mahony-Burgers equation; Chaos Solitons Fractals: 2016; Volume 89 ,578-583. · Zbl 1360.35035
[34] Weisstein, E.W.; “Erfi.” From MathWorld-A Wolfram Web Resource; ; .
[35] Abramowitz, M.; Stegun, I.A.; ; Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables: New York, NY, USA 1972; . · Zbl 0543.33001
[36] Anco, S.C.; Generalization of Noether’s Theorem in Modern Form to Non-Variational Partial Differential Equations; Recent progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science: New York, NY, USA 2016; .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.