×

Poisson geometry and Azumaya loci of cluster algebras. (English) Zbl 07915892

Cluster algebras were defined by S. Fomin and A. Zelevinsky [J. Am. Math. Soc. 15, No. 2, 497–529 (2002; Zbl 1021.16017)], and since then, they have played prominent role in many areas of mathematics and mathematical physics. The upper cluster algebras \(\mathsf{U}\) with their Gekhtman–Shapiro–Vainshtein (GSV) Poisson brackets and their root of unity quantizations \(\mathsf{U}_{\varepsilon}\) are the main types of objects in the theory of cluster algebras. On the Poisson side, the authors prove that the spectrum of every finitely generated upper cluster algebra \(\mathsf{U}\) with its GSV Poisson structure always has a Zariski open orbit of symplectic leaves and give an explicit description of it. On the quantum side, the authors describe the fully Azumaya loci of the quantizations \(\mathsf{U}_{\varepsilon}\) under the assumption that \(\mathsf{A}_{\varepsilon}=\mathsf{U}_{\varepsilon}\) and \(\mathsf{U}_{\varepsilon}\) is a finitely generated algebra. All results allow frozen variables to be either inverted or not.

MSC:

13F60 Cluster algebras
53D17 Poisson manifolds; Poisson groupoids and algebroids
16G30 Representations of orders, lattices, algebras over commutative rings
17B37 Quantum groups (quantized enveloping algebras) and related deformations

Citations:

Zbl 1021.16017

References:

[1] Berenstein, A.; Fomin, S.; Zelevinsky, A., Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J., 126, 1, 1-52, 2005 · Zbl 1135.16013
[2] Berenstein, A.; Zelevinsky, A., Quantum cluster algebras, Adv. Math., 195, 405-455, 2005 · Zbl 1124.20028
[3] Bonahon, F.; Wong, H., Representations of the Kauffman bracket skein algebra I: invariants and miraculous cancellations, Invent. Math., 204, 195-243, 2016 · Zbl 1383.57015
[4] Brown, K. A.; Goodearl, K. R., Lectures on Algebraic Quantum Groups, Adv. Courses in Math., 2002, CRM Barcelona: CRM Barcelona Birkhäuser · Zbl 1027.17010
[5] Brown, K. A.; Gordon, I., The ramification of centres: Lie algebras in positive characteristic and quantised enveloping algebras, Math. Z., 238, 4, 733-779, 2001 · Zbl 1037.17011
[6] Brown, K. A.; Gordon, I., The ramifications of the centres: quantised function algebras at roots of unity, Proc. Lond. Math. Soc. (3), 84, 147-178, 2002 · Zbl 1023.16029
[7] Brown, K. A.; Gordon, I., Poisson orders, representation theory, and symplectic reflection algebras, J. Reine Angew. Math., 559, 193-216, 2003 · Zbl 1025.17007
[8] Casals, R.; Gorsky, E.; Gorsky, M.; Le, I.; Shen, L.; Simental, J., Cluster structures on braid varieties
[9] Chari, V.; Pressley, A., A Guide to Quantum Groups, 1995, Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0839.17010
[10] De Concini, C.; Procesi, C., Quantum groups, (D-Modules, Representation Theory and Quantum Groups. D-Modules, Representation Theory and Quantum Groups, Lecture Notes in Math., vol. 1565, 1993, Springer), 31-140 · Zbl 0795.17005
[11] Eisenbud, D., Commutative Algebra: with a View Towards Algebraic Geometry, Grad. Texts in Math., vol. 150, 1995, Springer-Verlag: Springer-Verlag New York · Zbl 0819.13001
[12] Fock, V. V.; Goncharov, A. B., Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4), 42, 865-930, 2009 · Zbl 1180.53081
[13] Fomin, S.; Zelevinsky, A., Cluster algebras I: foundations, J. Am. Math. Soc., 15, 497-529, 2002 · Zbl 1021.16017
[14] Fomin, S.; Zelevinsky, A., The Laurent phenomenon, Adv. Appl. Math., 28, 119-144, 2002 · Zbl 1012.05012
[15] Frohman, C.; Kania-Bartoszynska, J.; Lê, T., Unicity for representations of the Kauffman bracket skein algebra, Invent. Math., 215, 609-650, 2019 · Zbl 1491.57014
[16] Ganev, I.; Jordan, D.; Safronov, P., The quantum Frobenius for character varieties and multiplicative quiver varieties
[17] Geiß, C.; Leclerc, B.; Schröer, J., Kac-Moody groups and cluster algebras, Adv. Math., 228, 329-433, 2011 · Zbl 1232.17035
[18] Geiß, C.; Leclerc, B.; Schröer, J., Quantum cluster algebras and their specializations, J. Algebra, 558, 411-422, 2020 · Zbl 1440.13100
[19] Gekhtman, M.; Shapiro, M.; Vainshtein, A., Cluster algebras and Poisson geometry, Mosc. Math. J., 3, 899-934, 2003 · Zbl 1057.53064
[20] Gekhtman, M.; Shapiro, M.; Vainshtein, A., Exotic cluster structures on \(\operatorname{SL}_n\): the Cremmer-Gervais case, Mem. Am. Math. Soc., 246, 1165, 2017, v+94 pp · Zbl 1373.53112
[21] Gekhtman, M.; Shapiro, M.; Vainshtein, A., Plethora of cluster structures on \(\operatorname{GL}_n\), Mem. Am. Math. Soc., 297, Article 1486 pp., 2024 · Zbl 07913521
[22] Goodearl, K. R.; Yakimov, M., Poisson structures on affine spaces and flag varieties. II, Trans. Am. Math. Soc., 361, 5753-5780, 2009 · Zbl 1179.53087
[23] Goodearl, K. R.; Yakimov, M. T., Quantum cluster algebra structures on quantum nilpotent algebras, Mem. Am. Math. Soc., 247, 1169, 2017, vii + 119pp · Zbl 1372.16040
[24] Goodearl, K. R.; Yakimov, M. T., The Berenstein-Zelevinsky quantum cluster algebra conjecture, J. Eur. Math. Soc., 22, 8, 2453-2509, 2020 · Zbl 1471.13046
[25] Goodearl, K. R.; Yakimov, M. T., Integral quantum cluster structures, Duke Math. J., 170, 1137-1200, 2021 · Zbl 1478.13036
[26] Goodearl, K. R.; Yakimov, M. T., Cluster algebra structures on Poisson nilpotent algebras, Mem. Am. Math. Soc., 290, 2023 · Zbl 1535.13001
[27] Huang, S.; Lê, T. T.Q.; Yakimov, M., Root of unity quantum cluster algebras and Cayley-Hamilton algebras · Zbl 1534.13016
[28] Knutson, A.; Lam, T.; Speyer, D. E., Projections of Richardson varieties, J. Reine Angew. Math., 687, 133-157, 2014 · Zbl 1345.14047
[29] Matherne, J.; Muller, G., Computing upper cluster algebras, Int. Math. Res. Not., 11, 3121-3149, 2015 · Zbl 1350.13026
[30] Muller, G., Locally acyclic cluster algebras, Adv. Math., 233, 207-247, 2013 · Zbl 1279.13032
[31] Muller, G., Skein and cluster algebras of marked surfaces, Quantum Topol., 7, 435-503, 2016 · Zbl 1375.13038
[32] Nguyen, B.; Trampel, K.; Yakimov, M., Noncommutative discriminants via Poisson primes, Adv. Math., 322, 269-307, 2017 · Zbl 1403.17020
[33] Nguyen, B.; Trampel, K.; Yakimov, M., Root of unity quantum cluster algebras and discriminants
[34] Polishchuk, A., Algebraic geometry of Poisson brackets, Algebraic Geometry, 7. Algebraic Geometry, 7, J. Math. Sci. (N.Y.), 84, 1413-1444, 1997 · Zbl 0995.37057
[35] Shen, L.; Weng, D., Cluster structures on double Bott-Samelson cells, Forum Math. Sigma, 9, Article e66 pp., 2021 · Zbl 1479.13028
[36] Sherman, P.; Zelevinsky, A., Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Mosc. Math. J., 4, 947-974, 2004 · Zbl 1103.16018
[37] Yakimov, M., Symplectic leaves of complex reductive Poisson-Lie groups, Duke Math. J., 112, 453-509, 2002 · Zbl 1031.17012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.