×

Unicity for representations of the Kauffman bracket skein algebra. (English) Zbl 1491.57014

Summary: This paper resolves the unicity conjecture of F. Bonahon and H. Wong [Quantum Topol. 10, No. 2, 325–398 (2019; Zbl 1447.57017)] for the Kauffman bracket skein algebras of all oriented finite type surfaces at all roots of unity. The proof is a consequence of a general unicity theorem that says that the irreducible representations of a prime affine \(k\)-algebra over an algebraically closed field \(k\), that is finitely generated as a module over its center, are generically classified by their central characters. The center of the Kauffman bracket skein algebra of any orientable surface at any root of unity is characterized, and it is proved that the skein algebra is finitely generated as a module over its center. It is shown that for any orientable surface the center of the skein algebra at any root of unity is the coordinate ring of an affine algebraic variety.

MSC:

57K31 Invariants of 3-manifolds (including skein modules, character varieties)
57K16 Finite-type and quantum invariants, topological quantum field theories (TQFT)
16S99 Associative rings and algebras arising under various constructions

Citations:

Zbl 1447.57017

References:

[1] Andersen, J.E., Kashaev, R.: A TQFT from quantum Teichmüller theory. Commun. Math. Phys. 330(3), 887-934 (2014) · Zbl 1305.57024 · doi:10.1007/s00220-014-2073-2
[2] Baseilhac, S., Benedetti, R.: Quantum hyperbolic geometry. Algebr. Geom. Topol. 7, 845-917 (2007) · Zbl 1139.57008 · doi:10.2140/agt.2007.7.845
[3] Bonahon, F., Liu, Xiaobo: Representations of the quantum Teichmüller space and invariants of surface diffeomorphisms. Geom. Topol. 11, 889-937 (2007) · Zbl 1134.57008 · doi:10.2140/gt.2007.11.889
[4] Fock, V.V., Chekhov, L.O.: Quantum Teichmüller spaces. Teoret. Mat. Fiz. 120(3), 511-528 (1999); translation in Theoret. Math. Phys. 120(3), 1245-1259 (Russian) · Zbl 0986.32007
[5] Bonahon, F., Wong, H.: Quantum traces for representations of surface groups in SL2(C). Geom. Topol. 15(3), 1569-1615 (2011) · Zbl 1227.57003 · doi:10.2140/gt.2011.15.1569
[6] Bonahon, F., Wong, Helen: Representations of the Kauffman skein algebra I: invariants and miraculous cancellations. Invent. Math. 204, 195-243 (2016) · Zbl 1383.57015 · doi:10.1007/s00222-015-0611-y
[7] Bonahon, F., Wong, H.: Representations of the Kauffman Bracket Skein Algebra II: Punctured Surfaces. arXiv:1206.1639 · Zbl 1422.57032
[8] Bonahon, F., Wong, H.: Representations of the Kauffman Bracket Skein Algebra III: Closed Surfaces and Naturality. arXiv:1505.01522 · Zbl 1422.57032
[9] van Oystaeyen, F.M.J., Verschoren, A.H.M.J.: Non-commutative Algebraic Geometry: An Introduction. Lecture Notes in Mathematics, vol. 881. Springer, Berlin (1981) · Zbl 0477.16001 · doi:10.1007/BFb0091730
[10] Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley Publishing Co., Reading (1969) · Zbl 0175.03601
[11] Brown, K.A., Goodearl, K.R.: Lectures on Algebraic Quantum Groups, Advanced Courses in Mathematics CRM Barcelona. Birkhuser, Basel (2002) · Zbl 1027.17010 · doi:10.1007/978-3-0348-8205-7
[12] Takenov, N.: Representations of the Kauffamn Skein Algebra of Small Surfaces. Preprint arXiv:1504.04573 (2015)
[13] Artin, M.: Non commutative Rings, Class Notes, Math 251 Fall (1999). http://www-math.mit.edu/ etingof/artinnotes.pdf
[14] Gille, P., Szamuely, T.: Central Simple Algebras and Galois Cohomology. Cambridge Studies in Advanced Mathematics, vol. 101. Cambridge University Press, Cambridge (2006) · Zbl 1137.12001 · doi:10.1017/CBO9780511607219
[15] McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings. With the Cooperation of L. W. Small. Revised Edition. Graduate Studies in Mathematics, vol. 30. American Mathematical Society, Providence (2001). (ISBN: 0-8218-2169-5) · Zbl 0980.16019
[16] Bresar, M.: Introduction to Non commutative Algebra. Springer, Berlin (2014) · Zbl 1334.16001
[17] Rowen, L.H.: Ring Theory, Vol. II Pure and Applied Mathematics, 128. Academic Press Inc., Boston (1988). (ISBN: 0-12-599842-2) · Zbl 0651.16002
[18] Przytycki, J.H., Sikora, A.S.: On skein algebras and \[Sl_2({\mathbb{C}})\] Sl2(C)-character varieties. Topology 39(1), 115-148 (2000) · Zbl 0958.57011 · doi:10.1016/S0040-9383(98)00062-7
[19] Przytycki, J.: Fundamentals of Kauffman bracket skein modules. Kobe J. Math. 16, 45-66 (1999) · Zbl 0947.57017
[20] Turaev, V.: Skein quantization of Poisson algebras of loops on surfaces. Ann. Sci. Ecole Norm. Sup. (4) 24(6), 635-704 (1991) · Zbl 0758.57011 · doi:10.24033/asens.1639
[21] Bullock, D.: Rings of SL2(C)-characters and the Kauffman bracket skein module. Comment. Math. Helv. 72(4), 521-542 (1997) · Zbl 0907.57010 · doi:10.1007/s000140050032
[22] Barrett, J.W.: Skein spaces and spin structures. Math. Proc. Camb. Philos. Soc. 126, 267-275 (1999) · Zbl 0939.57019 · doi:10.1017/S0305004198003168
[23] Thurston, D.P.: Positive basis for surface skein algebras. Proc. Natl. Acad. Sci. USA 111(27), 9725-9732 (2014) · Zbl 1355.57015 · doi:10.1073/pnas.1313070111
[24] Marché, J.: The Kauffman skein algebra of a surface at \[\sqrt{-1}\sqrt{-1} \]. Math. Ann. 351(2), 347-364 (2011) · Zbl 1228.57014 · doi:10.1007/s00208-010-0600-9
[25] Sikora, A.S.: Skein modules at the 4th roots of unity. J. Knot Theory Ramif. 13(5), 571-585 (2004) · Zbl 1079.57012 · doi:10.1142/S0218216504003391
[26] Blanchet, C., Habegger, N., Masbaum, G., Vogel, P.: Topological quantum field theories derived from the Kauffman bracket. Topology 34(4), 883-927 (1995) · Zbl 0887.57009 · doi:10.1016/0040-9383(94)00051-4
[27] Lê, T.: On Kauffman bracket skein modules at roots of unity. Algebr. Geom. Topol. 15(2), 1093-1117 (2015) · Zbl 1315.57027 · doi:10.2140/agt.2015.15.1093
[28] Bullock, D.: A finite set of generators for the Kauffman bracket skein algebra. Math. Z. 231, 91-101 (1999) · Zbl 0932.57016 · doi:10.1007/PL00004727
[29] Abdiel, N., Frohman, C.: The localized skein algebra is Frobenius. Algebr. Geom. Topol. 17(6), 3341-3373 (2017) · Zbl 1421.57015 · doi:10.2140/agt.2017.17.3341
[30] Przytycki, J.H., Sikora, S.: Skein algebras of surfaces. arXiv:1602.07402 [math.GT] · Zbl 1464.57028
[31] Matveev, S.: Algorithmic Topology and Classification of 3-Manifolds. Algorithms and Computation in Mathematics, vol. 9, 2nd edn. Springer, Berlin (2007) · Zbl 1128.57001
[32] Lê, T.T.Q.: Quantum Teichmuller spaces and quantum trace map. J. Inst. Math. Jussieu (to appear, 2015). Preprint arXiv:1511.06054 · Zbl 1419.57036
[33] Luo, F., Stong, R.: Dehn-Thurston coordinates for curves on surfaces. Commun. Anal. Geom. 12(1), 1-41 (2004) · Zbl 1072.57012 · doi:10.4310/CAG.2004.v12.n1.a3
[34] Fathi, A., Laudenbach, F., Poénaru, V.: Travaux de Thurston sur les surfaces, Astérisque, vol. 66. Société Mathématique de France, Paris, Séminaire Orsay (1979) · Zbl 0406.00016
[35] McCarthy, J., Papadopoulos, A.: Dynamics on Thurstons sphere of projective measured foliations. Comment. Math. Helv. 64, 133-166 (1989) · Zbl 0681.57002 · doi:10.1007/BF02564666
[36] Frohman, C., Gelca, R.: Skein modules and the noncommutative torus. Trans. Am. Math. Soc. 352(10), 4877-4888 (2000) · Zbl 0951.57007 · doi:10.1090/S0002-9947-00-02512-5
[37] Abdiel, N., Frohman, C.: Frobenius algebras derived from the Kauffman bracket skein algebra. J. Knot Theory Ramif. 25(4), 1650016 (2016) · Zbl 1378.57019 · doi:10.1142/S0218216516500164
[38] Shafarevich, I.R.: Basic Algebraic Geometry. 1. Varieties in Projective Space. Translated from the 2007 Third Russian Edition, 3rd edn. Springer, Heidelberg (2013) · Zbl 1273.14004
[39] Sikora, A.S.: Character varieties. Trans. Am. Math. Soc. 364, 5173-5208 (2012) · Zbl 1291.14022 · doi:10.1090/S0002-9947-2012-05448-1
[40] Heusener, M., Porti, J.: The variety of characters in PSL2(C). Bol. Soc. Mat. Mex. (3) 10, 221-237 (2004). (special issue) · Zbl 1100.57014
[41] Frohman, C., Kania-Bartoszynska, J.: The Structure of the Kauffman Bracket Skein Algebra at Roots of Unity. arXiv:1607.03424 [math.GT] · Zbl 1417.57013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.