×

Cluster structures on double Bott-Samelson cells. (English) Zbl 1479.13028

The important paper under review, which among other things solves a couple of conjectures due, respectively, to A. Berenstein et al. [Duke Math. J. 126, No. 1, 1–52 (2005; Zbl 1135.16013)] and to V. V. Fock and A. B. Goncharov [Ann. Sci. Éc. Norm. Supér. (4) 42, No. 6, 865–930 (2009; Zbl 1180.53081)], is concerned with a family of new varieties, that the authors call double Bott-Samelson cells, which are endowed with certain cluster structures.
Cluster varieties are so called because they are associated to cluster algebras, a notion introduced by S. Fomin and A. Zelevinsky in three important articles published in between 2002 and 2007, corresponding to the references [J. Am. Math. Soc. 15, No. 2, 497–529 (2002; Zbl 1021.16017); Ann. Math. (2) 158, No. 3, 977–1018 (2003; Zbl 1057.52003); Compos. Math. 143, No. 1, 112–164 (2007; Zbl 1127.16023)] of the paper under review. They are suitable classes of commutative integral domains enriched with the action of distinguished subsets of finite cardinality, called clusters, which generate the algebra itself. Cluster structures already arise in more familiar cases of homogeneous spaces, such as Grassmannians. Indeed, the natural cells of a Grassmannian, attached to some complete flag, have cluster structures. Such structures are more generally studied in the case of double Bott-Samelson varieties.
But what are Bott-Samelson varieties and what does the adjective “double” stand for? Such varieties were introduced by R. Bott and H. Samelson [Am. J. Math. 80, 964–1029 (1961; Zbl 0101.39702)] to provide resolutions of singularities of (generalized) Schubert varieties and have many applications to geometric representation theory. They turn out to be natural generalizations of double Bruhat cells.
The Arianna thread to get to them is the following. If \(G\) is a complex connected linear algebraic group, \(T\) a maximal torus and \(B\) a Borel subgroup containing \(T\), it is known (see e.g. the classical book by T. A. Springer on algebraic groups) that to the root system \(R\) of \((G,B)\) one may associate a so-called generalised symmetrizable Cartan matrix. The entries of a Cartan matrix of a simple Lie algebra are normalized scalar product \(\frac{a_{ji}=2(r_{i},r_{j})}{(r_{j},r_{j})}\) of simple roots of the Lie algebra. In particular all the diagonal entries are equal to \(2\). To such matrix one may attach a braid group, whose elements satisfy the so called braid relations coming from topology, which saw several applications also in mathematical physics, for instance in the description of the Yang-BNaxter equation. To each simple root one may associate a double coset \(BwB\) and the the Bruhat decomposition is \(G=\coprod_{w\in W} BwB\). A double Bruhat cell is the intersection of two Bruhat cells with respect to two different elements of the Weil group (the group permuting the roots). Double Bott-Samelson cells are defined similarly to the double Bruhat cells, but the elements of the Weil group are replaced by braids of the Braid group associated to the generalised Cartan marix \(C\).
In the paper under review, the authors introduce four different versions of double Bott-Samelson cells associated to every pair of positive braids in the generalised braid group associated to \(C\). Their main and appealing result, among many others which are all incredibly interesting in their own, is the proof that certain decorated double Bott-Samelson cells are smooth affine varieties, whose coordinate rings are isomorphic to upper cluster algebras (Theorems 2.30, 3.45 and 3.46). These specific mathematical goals are achieved through an amazing blend of notions and techniques coming from different branches of mathematics, such as algebra, representation theory, algebraic geometry, combinatorics (especially employed in the master manipulations with Legendrian links and Legendrian Reidemeister moves).
The 89 pages of the paper are organized as follows. Besides a very detailed and comprehensive introduction, which clarifies what purposes the authors want to pursue, the exposition is divided into five sections (from 2 to 5) and three very useful appendices. Section 1.2 is crucial as it is related, and explains the connection, to the Donaldson-Thomas Transformation of Bott-Samelson Cells treated in detail in Section 4.
The three appendices are devoted respectively to basics on Kac-Peterson groups, to basics on cluster algebras (very important for non expert approaching the paper) and to computational codes for computing decorated configuration spaces.
It is not an easy paper, certainly not suited for a general audience but adressed to specialists in the subject, in that it is very technical. Clearly, this is is not indicated as a defect but rather to make the reader aware about this rather unavoidable feature, due to the deepness of the difficult questions the authors deal with.

MSC:

13F60 Cluster algebras
14M15 Grassmannians, Schubert varieties, flag manifolds
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
57K14 Knot polynomials

References:

[1] Abramenko, P.. Twin Buildings and Applications to S-Arithmetic Groups, Vol. 1641 of Lecture Notes in Mathematics(Springer, Berlin, 1996). doi: doi:10.1007/BFb0094079. · Zbl 0908.20003
[2] Berenstein, A., Fomin, S. and Zelevinsky, A., ‘Cluster algebras. III. Upper bounds and double Bruhat cells’, Duke Math. J.126(1) (2005), 1-52. doi: doi:10.1215/S0012-7094-04-12611-9. · Zbl 1135.16013
[3] Bott, R. and Samelson, H., ‘Applications of the theory of Morse to symmetric spaces’, Amer. J. Math.801958, 964-1029. doi: doi:10.2307/2372843. · Zbl 0101.39702
[4] Cao, P., Huang, M. and Li, F., ‘A conjecture on \(c\) -matrices of cluster algebras’, Nagoya Math. J.238 (2020), 37-46. doi: doi:10.1017/nmj.2018.18. · Zbl 1442.13060
[5] Demazure, M., ‘Désingularisation des variétés de Schubert généralisées’, Ann. Sci. École Norm. Sup. (4), 7 (1974), 53-88. · Zbl 0312.14009
[6] Elek, B. and J.-H., Lu, ‘Bott-Samelson varieties and Poisson ore extensions’, Int. Math. Res. Not.. Preprint, 2019, arXiv:1601.00047.
[7] Fock, V. and Goncharov, A., ‘Cluster \(X\) -varieties, amalgamation, and Poisson-Lie groups’, in Algebraic Geometry and Number Theory, Vol. 253 of Progr. Math. (Birkhäuser Boston, Boston, 2006). 27-68. · Zbl 1162.22014
[8] Fock, V. and Goncharov, A., ‘Cluster ensembles, quantization and the dilogarithm’, Ann. Sci. Éc. Norm. Supér. (4)42(6) (2009), 865-930. doi: doi:10.24033/asens. 2112. · Zbl 1180.53081
[9] Fock, V. and Goncharov, A., ‘The quantum dilogarithm and representations of quantum cluster varieties’, Invent. Math.175(2) (2009), 223-286. doi: doi:10.1007/s00222-008-0149-3. · Zbl 1183.14037
[10] Fomin, S. and Zelevinsky, A., ‘Double Bruhat cells and total positivity’, J. Amer. Math. Soc.12(2) (1999), 335-380. doi: doi:10.1090/S0894-0347-99-00295-7. · Zbl 0913.22011
[11] Fomin, S. and Zelevinsky, A., ‘Cluster algebras. I. Foundations’, J. Amer. Math. Soc.15(2) (2002), 497-529. doi: doi:10.1090/S0894-0347-01-00385-X. · Zbl 1021.16017
[12] Fomin, S. and Zelevinsky, A., ‘\(Y\) -systems and generalized associahedra’, Ann. Math. (2)158(3) (2003), 977-1018. doi: doi:10.4007/annals.2003.158. 977. · Zbl 1057.52003
[13] Fomin, S. and Zelevinsky, A., ‘Cluster algebras. IV. Coefficients’, Compos. Math.143(1) (2007), 112-164. doi: doi:10.1112/S0010437X06002521. · Zbl 1127.16023
[14] Fraser, C., ‘Quasi-homomorphisms of cluster algebras’, Adv. Appl. Math. 81 (2016), 40-77. doi:: doi:10.1016/j.aam.2016.06.005. · Zbl 1375.13031
[15] Galashin, P. and Lam, T., ‘Positroids, knots, and \(q,t\) -Catalan numbers’. Preprint, 2020, arXiv:2012.09745.
[16] Geiß, C., Leclerc, B. and Schröer, J., ‘Kac-Moody groups and cluster algebras’, Adv. Math.228(1) (2011), 329-433. doi: doi:10.1016/j.aim.2011.05.011. · Zbl 1232.17035
[17] Gekhtman, M., Shapiro, M. and Vainshtein, A.. Cluster Algebras and Poisson Geometry, Vol. 167 of Mathematical Surveys and Monographs(American Mathematical Society, Providence, RI, 2010). doi: doi:10.1090/surv/167. · Zbl 1217.13001
[18] Goncharov, A. and Shen, L., ‘Donaldson-Thomas transformations of moduli spaces of G-local systems’, Adv. Math.327 (2018), 225-348. doi: doi:10.1016/j.aim.2017. 06.017. · Zbl 1434.13022
[19] Goncharov, A. and Shen, L., ‘Quantum geometry of moduli spaces of local systems and representation theory’, Preprint, 2019, arXiv:1904.10491.
[20] Goodearl, K. and Yakimov, M., ‘Cluster algebra structures on Poisson nilpotent algebras’. Preprint, 2018, arXiv:1801.01963. · Zbl 1372.16040
[21] Gross, M., Hacking, P., Keel, S. and Kontsevich, M., ‘Canonical bases for cluster algebras’, J. Amer. Math. Soc.31(2) (2018), 497-608. doi: doi:10.1090/jams/890. · Zbl 1446.13015
[22] Guillermou, S., Kashiwara, M. and Schapira, P., ‘Sheaf quantization of Hamiltonian isotopies and applications to nondisplaceability problems’, Duke Math. J.161(2) (2012), 201-245. doi: doi:10.1215/00127094-1507367. · Zbl 1242.53108
[23] Hansen, H. C., ‘On cycles in flag manifolds’, Math. Scand.33 (1974), 269-274. doi: doi:10.7146/math.scand.a-11489. · Zbl 0301.14019
[24] Kac, V. G.. Infinite-Dimensional Lie Algebras, Vol. 44 of Progress in Mathematics(Birkhäuser Boston, Boston, 1983). doi: doi:10.1007/978-1-4757-1382-4. · Zbl 0537.17001
[25] Kac, V. G. and Peterson, D. H., ‘Regular functions on certain infinite-dimensional groups’, in Arithmetic and Geometry, Vol. II, Vol. 36 of Progr. Math.(Birkhäuser Boston, Boston, 1983), 141-166. www-math.mit.edu/kac/not-easily-available/regularfunctions.pdf. · Zbl 0578.17014
[26] Keller, B., ‘On cluster theory and quantum dilogarithm identities’, in Representations of Algebras and Related Topics, EMS Ser. Congr. Rep. (European Mathematical Society, Zürich, Switzerland, 2011), 85-116. doi: doi:10.4171/101-1/3. · Zbl 1307.13028
[27] Keller, B., ‘The periodicity conjecture for pairs of Dynkin diagrams’, Ann. Math. (2)177(1) (2013), 111-170. doi: doi:10.4007/annals.2013.177.1.3. · Zbl 1320.17007
[28] Kontsevich, M. and Soibelman, Y., ‘Stability structures, motivic Donaldson-Thomas invariants and cluster transformations’. Preprint, 2008, arXiv:0811.2435. · Zbl 1248.14060
[29] Kumar, S., Kac-Moody Groups, Their Flag Varieties and Representation Theory, Vol. 204 of Progress in Mathematics(Birkhäuser Boston, Boston, 2002). doi: doi:10.1007/978-1-4612-0105-2. · Zbl 1026.17030
[30] Lam, T. and Speyer, D., ‘Cohomology of cluster varieties. I. Locally acyclic case’. Preprint, 2016, arXiv:1604.06843.
[31] Lu, J.-H. and Mouquin, V., ‘On the \(T\) -leaves of some Poisson structures related to products of flag varieties’, Adv. Math.306 (2017), 1209-1261. doi: doi:10.1016/j.aim.2016.11.008. · Zbl 1356.53084
[32] Mouquin, V., ‘Local Poisson groupoids over mixed product Poisson structures and generalised double Bruhat cells’. Preprint, 2019, arXiv:1908.04044.
[33] Muller, G., ‘\( \mathbf{\mathcal{A}}=\mathbf{\mathcal{U}}\) for locally acyclic cluster algebras’, SIGMA10 (2014), Paper 094. doi: doi:10.3842/SIGMA.2014.094. · Zbl 1327.13079
[34] Nakanishi, T. and Zelevinsky, A., ‘On tropical dualities in cluster algebras’, in Algebraic Groups and Quantum Groups, Vol. 565 of Contemp. Math.(Amer. Math. Soc., Providence, RI, 2012), 217-226. doi: doi:10.1090/conm/565/ 11159. · Zbl 1317.13054
[35] Shen, L. and Weng, D., ‘Cyclic sieving and cluster duality for Grassmannian’, SIGMA16 (2020). · Zbl 1471.13048
[36] Shende, V., Treumann, D., Williams, H. and Zaslow, E., ‘Cluster varieties from Legendrian knots’, Duke Math. J.168(15) (2019), 2801-2871. doi: doi:10.1215/00127094-2019-0027. · Zbl 1475.53094
[37] Shende, V., Treumann, D. and Zaslow, E., ‘Legendrian knots and constructible sheaves’, Invent. Math.207(3) (2017), 1031-1133. doi: doi:10.1007/s00222-016-0681-5. · Zbl 1369.57016
[38] Webster, B. and Yakimov, M., ‘A Deodhar-type stratification on the double flag variety’, Transform. Groups12(4) (2007), 769-785. doi: doi:10.1007/s00031-007-0061-8. · Zbl 1144.14044
[39] Weng, D., ‘Donaldson-Thomas transformation of double Bruhat cells in semisimple Lie groups’, Ann. Sci. Éc. Norm. Supér.53 (2020), 291-352. · Zbl 1454.13039
[40] Weng, D., ‘Donaldson-Thomas transformation of Grassmannian’, Adv. Math.383 (2021), 107721. doi: doi:10.1016/j.aim.2021.107721. · Zbl 1471.14118
[41] Williams, H., ‘Cluster ensembles and Kac-Moody groups’, Adv. Math.247 (2013), 1-40. doi: doi:10.1016/j.aim. 2013.07.008. · Zbl 1317.13056
[42] Zelevinsky, A., ‘Connected components of real double Bruhat cells’, Internat. Math. Res. Not.21 (2000), 1131-1154. doi: doi:10.1155/S1073792800000568. · Zbl 0978.20021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.