×

Chaos measure dynamics in a multifactor model for financial market predictions. (English) Zbl 1531.62051

Summary: To answer the question if chaos changes over time, we apply rolling windows to wavelet-denoised logarithmic S&P500 returns (2000–2020) and calculate consecutive chaos measures (e.g., Hurst-, maximum Lyapunov exponent or sample entropy). We state time-variation of the chaos measure series, indicating chaos instability or inherent chaotic time variations of the underlying (hyper-)chaotic deterministic S&P500 return system. Moreover, we intend to deploy these chaos measure series as predictors for the denoted financial series. An optimised selection of these series is applied as input features for a dynamic factor model realised as deep learning multilayer perception neural network to predict the original S&P500 price and return series out-of-sample. The approach is validated by performance metrics (e.g., explained variance score) and the residuals are shown to be non-autocorrelated and \(\sim\)iid. Finally, we compare the results with selected base or benchmark models (e.g., autoregressive models). Thus, the approach provides a novel multifactor model for practical market price predictions from a dynamical (inherent) system-based view.

MSC:

62P05 Applications of statistics to actuarial sciences and financial mathematics
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
62G10 Nonparametric hypothesis testing
62M20 Inference from stochastic processes and prediction
91B84 Economic time series analysis
91G15 Financial markets
Full Text: DOI

References:

[1] Tang, Y.; Song, Z.; Zhu, Y.; Yuan, H.; Hou, M.; Ji, J.; Tang, C.; Li, J., A survey on machine learning models for financial time series forecasting. Neurocomputing, 363-380 (2022)
[2] Dezhkam, A.; Manzuri, M., Forecasting stock market for an efficient portfolio by combining XGBoost and Hilbert-Huang transform. Eng Appl Artif Intell (2023)
[3] Beltratti, A.; Stulz, R. M., Why is contagion asymmetric during the European sovereign crisis?. J Int Money Finance (2019)
[4] W.J. McKibbin and R. Fernando, “The Global Macroeconomic Impacts of COVID-19: seven Scenarios,” SSRN; CAMA Working Paper No. 19/2020, pp. 1-45, 2020.
[5] Lo, G.-D.; Marcelin, I.; Bassène, T.; Sène, B., The Russo-Ukrainian war and financial markets: the role of dependence on Russian commodities. Finance Res Lett (2022)
[6] Dreger, C., Economic impact of the Corona pandemic: costs and the recovery after the crisis. Asia Glob Econ, 1 (2022)
[7] Poon, S.-H.; Granger, C. W., Forecasting volatility in financial markets: a review. J Econ Lit, 2 (2003)
[8] Vogl, M., Frontiers of quantitative financial modelling: a literature review on the evolution in financial and risk modelling after the financial crisis (2008-2019). SN Bus. Econ., 183 (2022)
[9] Aguilar-Rivera, R.; Valenzuela-Rendón, M.; Rodríguez-Ortiz, J., Genetic algorithms and Darwinian approaches in financial applications: a survey. Expert Syst Appl, 7684-7697 (2015)
[10] Adams, Z.; Füss, R.; Glück, T., Are correlations constant? Empirical and theoretical results on popular correlation models in finance. J Bank Finance, 9-24 (2017)
[11] Alexandridis, A. K.; Kampouridis, M.; Cramer, S., A comparison of wavelet networks and genetic programming in the context of temperature derivatives. Int J Forecast, 21-47 (2017)
[12] Shi, Y.; Ho, K.-Y., Long memory and regime switching: a simulation study on the Markov regime-switching ARFIMA model. J Bank Finance, 189-204 (2015)
[13] Kristoufek, L., Multifractal height cross-correlation analysis: a new method for analyzing long-range cross correlation. Europhys Lett, 6, 68001 (2011)
[14] Ramiah, V.; Xu, X.; Moosa, I. A., Neoclassical finance, behavioural finance and noise traders: a review and assessment of the literature. Int Rev Financ Anal, 89-100 (2015)
[15] Celeste, V.; Corbet, S.; Gurdgiev, C., Fractal dynamics and wavelet analysis: deep volatility and return properties of Bitcoin, Ethereum and Ripple. Q Rev Econ Finance, 310-324 (2019)
[16] Berghorn, W., Trend Momentum. Quant Finance, 261-284 (2015)
[17] De Luca, G.; Dominique, G.; Giorgia, R., Assessing tail risk for nonlinear dependence of MSCI sector indices: a copula three-stage approach. Finance Res Lett, 327-333 (2019)
[18] Marwan, N.; Romano, M. C.; Thiel, M.; Kurths, J., Recurrence plots for the analysis of complex systems. Phys Rep, 237-329 (2007)
[19] Matilla-García, M.; Queralt, R.; Sanz, P.; Vázquez, F., A generalized BDS statistic. Comput Econ, 277-300 (2004) · Zbl 1121.62534
[20] Fernández-Rodríguez, F.; Sosvilla-Rivero, S.; Andrada-Félix, J., Testing chaotic dynamics via Lyapunov exponents. J Appl Econom, 911-930 (2005)
[21] Barkoulas, J. T.; Chakraborty, A.; Ouandlous, A., A metric and topological analysis of determinism in the crude oil spot market. Energy Econ, 584-591 (2012)
[22] Song, X.; Niu, D.; Zhang, Y., The chaotic attractor analysis of DJIA based on manifold embedding and Laplacian eigenmaps. Math Probl Eng, 1-10 (2016) · Zbl 1400.37038
[23] Eckmann, J.; Ruelle, D., Ergodic theory of chaos and strange attractors. Rev Mod Phys, 3, 617-656 (1985) · Zbl 0989.37516
[24] Guégan, D.; Leroux, J., Forecasting chaotic systems: the role of local Lyapunov exponents. Chaos, Solitons Fractals, 2401-2404 (2009)
[25] Eom, C.; Oh, G.; Jung, W.-S., Relationship between efficiency and predictability in stock price change. Physica A, 5511-5517 (2008)
[26] Jegadeesh, N.; Titman, S., Returns to buying winners and selling losers: implications for stock market efficiency. J Finance, 717-732 (1993)
[27] Lima, E.; Tabak, B., Testing for inefficiency in emerging markets exchange rates. Chaos, Solitons Fractals, 617-622 (2007)
[28] Di Matteo, T.; Aste, T.; Dacorogna, M., Scaling behaviours in differently developed markets. Physica A, 183-188 (2003) · Zbl 1072.91565
[29] Berghorn, W.; Vogl, M.; Schulz, M.; Otto, S., Trend momentum II: driving forces of low volatility and momentum. Int J Financ Res, 3, 300-319 (2021)
[30] Vogl, M., Hurst exponent dynamics of S&P 500 returns: implications for market efficiency, long memory, multifractality and financial crises predictability by application of a generalized nonlinear dynamics analysis framework. Chaos, Solitons Fractals (2023)
[31] Nazareth, N.; Reddy, Y., Financial applications of machine learning: a literature review. Expert Syst Appl (2023)
[32] Noisy chaos in intraday financial data: evidence from the American index. Appl Math Comput, 258-265 (2014)
[33] Vogl, M.; Rötzel, P. G., Chaoticity versus stochasticity in financial markets: are daily S&P 500 return dynamics chaotic?. Commun Nonlinear Sci Numer Simul (2022) · Zbl 07474627
[34] Escribano, A.; Pena, D.; Ruiz, E., 30 years of cointegration and dynamic factor models forecasting and its future with big data: editorial. Int J Forecast, 1333-1337 (2021)
[35] Oanea, D.-C., Financial markets integration: a vector error-correction approach. J Econ Asymmetries, 153-161 (2015)
[36] Maqbool, J.; Aggarwal, P.; Kaur, R.; Mittal, A.; Ganaie, I., Stock prediction by integrating sentiment scores of financial news and MLP-regressor: a machine learning approach. Procedia Comput Sci, 1067-1078 (2023)
[37] Übeyli, E., Time-varying biomedical signals analysis with multiclass support vector machines employing Lyapunov exponents. Digit Signal Process, 646-656 (2008)
[38] Cajueiro, D.; Tabak, B., The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient. Physica A, 521-537 (2004)
[39] Mensi, W.; Beljid, M.; Managi, S., Structural breaks and the time-varying levels of weak-form efficiency in crude oil markets: evidence from the Hurst exponent and Shannon entropy methods. Int Econ, 89-106 (2014)
[40] Shternshis, A.; Mazzarisi, P.; Marmi, S., Measuring market efficiency: the Shannon entropy of high-frequency financial time series. Chaos, Solitons Fractals (2022) · Zbl 1506.91129
[41] Ishizaki, R.; Inoue, M., Time-series analysis of multiple foreign exchange rates using time-dependent pattern entropy. Physica A, 967-974 (2018)
[42] Alvo, M.; firuzan, E.; Firuzan, A., Predictability of Dow Jones index via chaotic symbolic dynamics. World Appl Sci J, 835-839 (2011)
[43] Wei, Y., Time-varying Lyapunov functions for nonautonomous nabla fractional order systems. ISA Trans, 235-241 (2022)
[44] Zhang, Y., Improved GNN method with finite-time convergence for time-varying Lyapunov equation. Inf Sci, 494-503 (2022) · Zbl 07825526
[45] Bruijn, S.; Bregman, D.; Meijer, O.; Beek, P.; van Dieen, J., Maximum Lyapunov exponents as predictors of global gait stability: a modelling approach. Med Eng Phys, 428-436 (2012)
[46] Kähm, W.; Vassiliadis, V., Lyapunov exponents with model predictive control for exothermic batch reactors. IFAC Papers OnLine, 18, 423-428 (2018)
[47] Petry, A.; Barone, D., Preliminary experiments in speaker verification using time-dependent largest Lyapunov exponents. Comput Speech Lang, 403-413 (2003)
[48] MacKinnon, J., Approximate asymptotic distribution functions for unit-root and cointegration tests. J Bus Econ Stat, 167-176 (1994)
[49] Kwiatkowski, D.; Phillips, P.; Schmidt, P.; Shin, Y., Testing the null hypothesis of stationary against the alternative of a unit root. J Econom, 159-178 (1992) · Zbl 0871.62100
[50] Brock, W.; Dechert, W.; Scheinkman, J.; LeBaron, B., A test for independence based on the correlation dimension. Econom Rev, 197-235 (1996) · Zbl 0893.62034
[51] Massey, F. J., The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc, 253, 68-78 (2012)
[52] Gibbons, M.; Ross, S.; Shanken, J., A test of efficiency of a given portfolio. Econometrica, 5, 1121-1152 (1989) · Zbl 0679.62097
[53] Ljung, G.; Box, G., On a measure of a lack of fit in time series models. Biometrika, 2, 297-303 (1978) · Zbl 0386.62079
[54] Hurst, H., Long-term storage capacity of reservoirs. Trans Am Soc Civ Eng, 770 (1951)
[55] Mandelbrot, B. B., The fractal geometry of nature (1977), Freeman: Freeman USA · Zbl 0504.28001
[56] Cajueiro, D.; Gogas, P.; Tabak, B., Does financial market liberalization increase the degree of market efficiency? The case of the Athens stock exchange. Int Rev Financ Anal, 1-2, 50-57 (2009)
[57] Cao, G.; He, L.-Y.; Cao, J., Multifractal detrended analysis method and its application in financial markets (2018), Springer: Springer Singapore
[58] Richman, J.; Moorman, J., Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol - Heart Circ Physiol, 6, H2039-H2049 (2000)
[59] Kaffashi, F.; Foglyano, R.; Wilson, C. G.; Loparo, K. A., The effect of time delay on approximate & sample entropy calculations. Physica D, 3069-3074 (2008) · Zbl 1153.37445
[60] Kantz, H.; Schreiber, T., Nonlinear time series analysis (2003), Cambridge University Press: Cambridge University Press Cambridge
[61] Strogatz, S., Nonlinear dynamics and chaos (2014), Westview Press: Westview Press Colorado
[62] Rosenstein, M.; Collins, J.; De Luca, C., A practical method for calculating largest Lyapunov exponents from small data sets. Physica D, 117-134 (1993) · Zbl 0779.58030
[63] Zeng, X.; Eykholt, R.; Pielke, R., Estimating the Lyapunov exponent spectrum from short time series of low precision. Phys. Rev. Lett., 3229-3232 (1991)
[64] Bask, M.; Gençay, R., Testing chaotic dynamics via Lyapunov exponents. Physica D, 1-2 (1998) · Zbl 1070.37500
[65] Verhulst, F., Nonlinear differential equations and dynamical systems (1985), Springer
[66] Gençay, R., A statistical framework for testing chaotic dynamics via Lyapunov exponents. Physica D, 423-438 (1996)
[67] Ziehmann, C.; Smith, L. A.; Kurths, J., The bootstrap and Lyapunov exponents in deterministic chaos. Physica D, 49-59 (1999) · Zbl 0948.37023
[68] Sano, M.; Sawada, Y., Measurement of the Lyapunov spectrum from a chaotic time series. Phys. Rev. Lett., 1082 (1985)
[69] Darbyshire, A.; Broomhead, D., Robust estimation of tangent maps and Lyapunov spectra. Physica D, 287 (1996) · Zbl 0886.58091
[70] Eckmann, J.; Oliffson, S.; Kamphorst, X.; Ruelle, S.; Ciliberto, S., Lyapunov exponents from time series. Phys Rev A, 4971-4979 (1986)
[71] Wolf, A.; Swift, J.; Swinney, H.; Vastano, J., Determining Lyapunov exponents from a time series. Physica D, 3, 285-317 (1985) · Zbl 0585.58037
[72] Escot, L.; Sandubete, J., Estimating Lyapunov exponents on a noisy environment by global and local Jacobian indirect algorithms. Appl Math Comput (2023) · Zbl 1510.65315
[73] Bao, D.; Yang, Z., Intelligent stock trading system by turning point confirming and probabilistic reasoning. Expert Syst Appl, 620-627 (2008)
[74] Aguirre, L. A.; Billings, S., Identification of models for chaotic systems from noisy data: implications for performance and nonlinear filtering. Physica D, 239-258 (1995) · Zbl 0888.93015
[75] Altan, A.; Karasu, S.; Bekiros, S., Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques. Chaos, Solitons Fractals, 325-336 (2019)
[76] Mitra, S., A wavelet filtering based analysis of macroeconomic indicators: the Indian evidence. Appl Math Comput, 1055-1079 (2006) · Zbl 1131.91377
[77] Mallat, S., A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell, 7, 674-693 (1989) · Zbl 0709.94650
[78] Wojtaszczyk, P., A mathematical introduction to wavelets (1997), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0865.42026
[79] Chang, S.; Grace, S.; Yu, B.; Vetterli, M., Adaptive wavelet thresholding for image denoising and compression. IEEE Trans, 1532-1546 (2000) · Zbl 0962.94028
[80] Donoho, D.; Johnstone, J., Adapting to unknown smoothness via wavelet shrinkage. J Am Stat Assoc, 432, 1200-1244 (1995) · Zbl 0869.62024
[81] Mallat, S., A wavelet tour of signal processing (1998), Academic Press: Academic Press San Diego · Zbl 0937.94001
[82] Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V., Gene selection for cancer classification using support vector machines. Mach Learn, 1-3, 389-422 (2002) · Zbl 0998.68111
[83] Aggarwal, C., Neural networks and deep learning (2018), Springer: Springer USA · Zbl 1402.68001
[84] D. Kingma and J. Ba, “Adam: a method for stochastic optimization,” arXiv //ICLR 2015 conference paper, vol. 1412.6980, pp. 1-15, 2017.
[85] Babu, C.; Reddy, B., Prediction of selected Indian stock using a partitioning-interpolation based ARIMA-GARCH model. Appl Comput Inform, 2, 130-143 (2015)
[86] Zolfaghari, M.; Gholami, S., A hybrid approach of adaptive wavelet transform, long short-term memory and ARIMA-GARCH family models for the stock index prediction. Expert Syst Appl (2021)
[87] BenSaïda, A.; Litimi, H., High level chaos in the exchange and index markets. Chaos, Solitons Fractals, 90-95 (2013) · Zbl 1341.91102
[88] Yousefpoor, P.; Esfahani, M.; Nojumi, H., Looking for systematic approach to select chaos tests. Appl Math Comput, 1, 73-91 (2008) · Zbl 1133.91532
[89] Matilla-García, M.; Marín, M. R., A new test for chaos and determinism based on symbolic dynamics. J Econ Behav Organ, 600-614 (2010)
[90] Cecen, A. A.; Erkal, C., Distinguishing between stochastic and deterministic behavior in high frequency foreign exchange rate returns: can non-linear dynamics help forecasting?. Int J Forecast, 465-473 (1996)
[91] Kocenda, E., An alternative to the BDS test: integration across the correlation integral. Econom Rev, 3, 337-351 (2001) · Zbl 1047.62038
[92] Calitz, F., An alternative to the Kolmogorov-Smirnov test for goodness of fit. Commun Stat - Theory Methods, 12, 3519-3534 (1987) · Zbl 0648.62045
[93] Teoh, H.; Cheng, C.-H.; Chu, H.-H.; Chen, J.-S., Fuzzy time series model based on probabilistic approach and rough set rule induction for empirical research in stock markets. Data Knowl Eng, 1, 103-117 (2008)
[94] Oyedele, A.; Ajaya, A.; Oyedele, L.; Bello, S.; Jimoh, K., Performance evaluation of deep learning and boosted trees for cryptocurrency closing price prediction. Expert Syst Appl, C (2023)
[95] Mizrach, B., The distribution of the Theil U-statistic in bivariate normal populations. Econ Lett, 2, 163-167 (1992) · Zbl 0800.62074
[96] Owolabi, O.; Okoh, D.; Rabiu, B.; Obafaye, A.; Dauda, K., A median absolute deviation-neural network (MAD-NN) method for atmospheric temperature data cleaning. MethodsX (2021)
[97] McKenzie, J., Mean absolute percentage error and bias in economic forecasting. Econ Lett, 3, 259-262 (2011) · Zbl 1239.91124
[98] Alstrøm, P.; Madsen, P., Tracking signals in inventory control systems. A simulation study. Int J Prod Econ, 1-3, 293-302 (1996)
[99] Portet, S., A primer on model selection using the Akaike information criterion. Infect Dis Model, 111-128 (2020)
[100] Pierdzioch, C.; Rülke, J., On the directional accuracy of forecasts of emerging market exchange rates. Int Rev Econ Finance, 369-376 (2015)
[101] Sornette, D., Critical market crashes. Phys Rep, 1-98 (2003) · Zbl 1011.91036
[102] Dastjerdi, D.; Aghaee, M., Shift limits of a non-autonomous system. Topol Appl (2023) · Zbl 1511.37028
[103] Lin, G.; Maya, C.; Zhang, Z., Learning the dynamical response of nonlinear non-autonomous dynamical systems with deep operator neural networks. Eng Appl Artif Intell (2023)
[104] Quilty, J.; Adamowski, J., Addressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting framework. J Hydrol, 336-353 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.