×

U-splines: splines over unstructured meshes. (English) Zbl 1507.65059

Summary: U-splines are a novel approach to the construction of a spline basis for representing smooth objects in Computer-Aided Design (CAD) and Computer-Aided Engineering (CAE). A spline is a piecewise-defined function that satisfies continuity constraints between adjacent cells in a mesh. U-splines differ from existing spline constructions, such as Non-Uniform Rational B-splines (NURBS), subdivision surfaces, T-splines, and hierarchical B-splines, in that they can accommodate local variation in cell size, polynomial degree, and smoothness simultaneously over more varied mesh configurations. Mixed cell types (e.g., triangle and quadrilateral cells in the same mesh) and T-junctions are also supported, although the continuity of interfaces with triangle and tetrahedral cells is limited in the present work. The U-spline algorithm introduces a new technique for using local null space solutions to construct basis functions for the global spline null space problem. The U-spline construction is presented for curves, surfaces, and volumes with higher dimensional generalizations possible. A set of requirements are given to ensure that the U-spline basis is positive, forms a partition of unity, is complete, and is locally linearly independent.

MSC:

65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
65D07 Numerical computation using splines
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Strang, Gilbert, Piecewise polynomials and the finite element method, Bull. Amer. Math. Soc., 79, 6, 1128-1137 (1973), (ISSN: 0002-9904, 1936-881X). URL: https://www.ams.org/home/page/ (visited on 10/24/2018) · Zbl 0285.41009
[2] Cirak, Fehmi; Ortiz, Michael; Schröder, Peter, Subdivision surfaces: a new paradigm for thin-shell finite-element analysis, Internat. J. Numer. Methods Engrg., 47, 12, 2039-2072 (2000), (Visited on 10/24/2018) · Zbl 0983.74063
[3] Hollig, Klaus, Finite Element Methods with B-Splines, 153 (2003), SIAM, Google-Books-ID: jSVeF8FgYD8C · Zbl 1020.65085
[4] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39, 4135-4195 (2005), URL: https://www.sciencedirect.com/science/article/pii/S0045782504005171 (visited on 06/14/2021) · Zbl 1151.74419
[5] Cottrell, J. A., Isogeometric analysis of structural vibrations (2006) · Zbl 1119.74024
[6] Garoni, Carlo, Spectral analysis and spectral symbol of matrices in isogeometric Galerkin methods, Math. Comp., 86, 305, 1343-1373 (2017), (ISSN: 0025-5718, 1088-6842). URL: https://www.ams.org/home/page/ (visited on 11/01/2018) · Zbl 1359.65252
[7] Morganti, S., Patient-specific isogeometric structural analysis of aortic valve closure, Comput. Methods Appl. Mech. Engrg., 508-520 (2015), Isogeometric Analysis Special Issue 284. URL: http://www.sciencedirect.com/science/article/pii/S0045782514003806 (visited on 02/04/2019) · Zbl 1423.92015
[8] Peters, J.; Reif, U., Subdivision surfaces, (Geometry and Computing (2010), Springer: Springer Berlin Heidelberg), URL: https://books.google.com/books?id=ndaecQAACAAJ
[9] Sederberg, Thomas, T-Splines and T-NURCCs (2003), Faculty Publications, URL: https://scholarsarchive.byu.edu/facpub/1057
[10] Deng, Jiansong, Polynomial splines over hierarchical T-meshes, Graph. Models, 70, 4, 76-86 (2008), URL: http://www.sciencedirect.com/science/article/pii/S1524070308000039 (visited on 10/29/2018)
[11] Li, Xin; Deng, Jiansong; Chen, Falai, Polynomial splines over general T-meshes, Vis. Comput., 26, 4, 277-286 (2010), (ISSN: 0178-2789, 1432-2315). URL: https://link.springer.com/article/10.1007/s00371-009-0410-9 (visited on 12/14/2017)
[12] Reif, Ulrich, A refineable space of smooth spline surfaces of arbitrary topological genus, J. Approx. Theory, 90, 2, 174-199 (1997), URL: http://www.sciencedirect.com/science/article/pii/S0021904596930798 (visited on 05/11/2016) · Zbl 0891.41007
[13] Nguyen, Thien; Peters, Jörg, Refinable C1 spline elements for irregular quad layout, Comput. Aided Geom. Design, 43, 123-130 (2016), Geometric Modeling and Processing 2016. URL: http://www.sciencedirect.com/science/article/pii/S0167839616300103 (visited on 12/22/2016) · Zbl 1418.65026
[14] Toshniwal, Deepesh; Speleers, Hendrik; Hughes, Thomasb J. R., Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on extraordinary points: Geometric design and isogeometric analysis considerations, Comput. Methods Appl. Mech. Engrg., 411-458 (2017), Advances in Computational Mechanics and Scientific Computation—the Cutting Edge 327. URL: http://www.sciencedirect.com/science/article/pii/S0045782517305303 (visited on 10/31/2018) · Zbl 1439.65017
[15] Argyris, J. H.; Fried, I.; Scharpf, D. W., The TUBA family of plate elements for the matrix displacement method, Aeronaut. J., 72, 692, 701-709 (1968), (ISSN: 0001-9240, 2059-6464). (Visited on 10/30/2018)
[16] Bazilevs, Y., Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 5, 229-263 (2010), Computational Geometry and Analysis. URL: http://www.sciencedirect.com/science/article/pii/S0045782509000875 (visited on 02/04/2019) · Zbl 1227.74123
[17] Li, X.; Scott, M. A., Analysis-suitable T-splines: characterization, refineability, and approximation, Math. Models Methods Appl. Sci., 24, 6, 1141-1164 (2014) · Zbl 1292.41004
[18] Dokken, Tor; Lyche, Tom; Pettersen, Kjella Fredrik, Polynomial splines over locally refined box-partitions, Comput. Aided Geom. Design, 30, 3, 331-356 (2013), URL: http://www.sciencedirect.com/science/article/pii/S0167839613000113 (visited on 10/29/2018) · Zbl 1264.41011
[19] Giannelli, Carlotta; Jüttler, Bert; Speleers, Hendrik, THB-splines: The truncated basis for hierarchical splines, Comput. Aided Geom. Design, 29, 7, 485-498 (2012), Geometric Modeling and Processing 2012. URL: http://www.sciencedirect.com/science/article/pii/S0167839612000519 (visited on 07/17/2020) · Zbl 1252.65030
[20] Scott, M. A.; Thomas, D. C.; Evans, E. J., Isogeometric spline forests, Comput. Methods Appl. Mech. Engrg., 269, 222-264 (2014), URL: http://www.sciencedirect.com/science/article/pii/S0045782513002764 (visited on 04/08/2015) · Zbl 1296.65023
[21] Groisser, David; Peters, Jörg, Matched -constructions always yield -continuous isogeometric elements, Comput. Aided Geom. Design, 34, 67-72 (2015), URL: http://www.sciencedirect.com/science/article/pii/S0167839615000151 (visited on 05/20/2015) · Zbl 1375.65026
[22] Kapl, Mario; Sangalli, Giancarlo; Takacs, Thomas, Construction of analysis-suitable G1 planar multi-patch parameterizations, Comput. Aided Des., 97, 41-55 (2018), URL: http://www.sciencedirect.com/science/article/pii/S0010448517302439 (visited on 10/30/2018)
[23] Alfeld, Peter; Schumaker, Larrya L., Smooth macro-elements based on clough-tocher triangle splits, Numer. Math., 90, 4, 597-616 (2002), URL: https://doi.org/10.1007/s002110100304 (visited on 10/30/2018) · Zbl 0998.65016
[24] Speleers, Hendrik, Construction of normalized B-splines for a family of smooth spline spaces over Powell-Sabin triangulations, Constr. Approx., 37, 1, 41-72 (2012), (ISSN: 0176-4276, 1432-0940). URL: http://link.springer.com/article/10.1007/s00365-011-9151-x (visited on 06/29/2015) · Zbl 1264.41014
[25] Speleers, Hendrik; Manni, Carla; Pelosi, Francesca, From NURBS to NURPS geometries, Comput. Methods Appl. Mech. Engrg., 255, 238-254 (2013), URL: http://www.sciencedirect.com/science/article/pii/S0045782512003507 (visited on 10/14/2016) · Zbl 1297.65018
[26] Alfeld, Peter, Bivariate spline spaces and minimal determining sets, J. Comput. Appl. Math., 119, 1, 13-27 (2000), URL: http://www.sciencedirect.com/science/article/pii/S0377042700003691 (visited on 04/11/2018) · Zbl 0966.65017
[27] Lai, Ming-Jun; Schumaker, Larrya L., Spline Functions on Triangulations, 609 (2007), Cambridge University Press, Google-Books-ID: 6hvqGgbBmEoC · Zbl 1185.41001
[28] Li, Xin; Chen, Falai, On the instability in the dimension of splines spaces over T-meshes, Comput. Aided Geom. Design, 28, 7, 420-426 (2011), URL: https://link.springer.com/article/10.1007/s00371-009-0410-9 (visited on 12/14/2017) · Zbl 1232.65023
[29] Schumaker, Larrya L.; Lujun, Wang, Spline spaces on TR-meshes with hanging vertices, Numer. Math., 118, 3, 531-548 (2011), URL: https://doi.org/10.1007/s00211-010-0353-0 (visited on 10/22/2018) · Zbl 1225.41003
[30] Neamtu, Marian, Delaunay configurations and multivariate splines: A generalization of a result of B. N. Delaunay, Trans. Amer. Math. Soc., 359, 7, 2993-3004 (2007), (ISSN: 0002-9947, 1088-6850). URL: http://www.ams.org/tran/2007-359-07/S0002-9947-07-03976-1/ (visited on 09/10/2015) · Zbl 1118.41005
[31] Cohen, Elaine; Lyche, Tom; Riesenfeld, Richard, A B-spline-like basis for the Powell-sabin 12-split based on simplex splines, Math. Comp., 82, 283, 1667-1707 (2013), (ISSN: 0025-5718, 1088-6842). URL: https://www.ams.org/home/page/ (visited on 10/30/2018) · Zbl 1278.41005
[32] Lyche, Tom; Muntingh, Georg, Simplex spline bases on the Powell-sabin 12-split: Part I, Oberwolfach Rep., 12, 2, 1139-1200 (2015), arXiv:1505.01798. URL: http://arxiv.org/abs/1505.01798 (visited on 10/30/2018)
[33] Stangeby, Ivara Haugalokken, Simplex splines on the Powell-sabin 12-split (2018), URL: https://www.duo.uio.no/handle/10852/64070 (visited on 10/30/2018)
[34] Awanou, Gerard; Lai, Ming-jun; Wenston, Paul, The multivariate spline method for scattered data fitting… (2005)
[35] Hu, X.; Han, D.; Lai, M., Bivariate splines of various degrees for numerical solution of partial differential equations, SIAM J. Sci. Comput., 29, 3, 1338-1354 (2007), URL: http://epubs.siam.org/doi/abs/10.1137/060667207 (visited on 08/21/2015) · Zbl 1144.65075
[36] Schumaker, Larry, Spline Functions: Basic Theory, 598 (2007), Cambridge University Press · Zbl 1123.41008
[37] Jaxon, Noah; Qian, Xiaoping, Isogeometric analysis on triangulations, Comput. Aided Des., 46, 45-57 (2014), 2013 SIAM Conference on Geometric and Physical Modeling. URL: http://www.sciencedirect.com/science/article/pii/S0010448513001577 (visited on 08/13/2015)
[38] Pelosi, Francesca, Splines over regular triangulations in numerical simulation, Comput. Aided Des., 82, 100-111 (2017), Isogeometric Design and Analysis. URL: http://www.sciencedirect.com/science/article/pii/S0010448516300902 (visited on 01/19/2017)
[39] Xia, Songtao; Wang, Xilu; Qian, Xiaoping, Continuity and convergence in rational triangular Bézier spline based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 297, 292-324 (2015), URL: http://www.sciencedirect.com/science/article/pii/S0045782515002777 (visited on 01/27/2016) · Zbl 1425.65188
[40] Xia, Songtao; Qian, Xiaoping, Isogeometric analysis with Bézier tetrahedra (2017) · Zbl 1439.65019
[41] Demkowicz, L., Toward a universal h-p adaptive finite element strategy, part 1. Constrained approximation and data structure, Comput. Methods Appl. Mech. Engrg., 77, 1, 79-112 (1989), URL: http://www.sciencedirect.com/science/article/pii/0045782589901291 (visited on 10/31/2018) · Zbl 0723.73074
[42] Sederberg, Thomasa W.; Zheng, Jianmin; Song, Xiaowen, Knot intervals and multi-degree splines, Comput. Aided Geom. Design, 20, 7, 455-468 (2003), URL: http://www.sciencedirect.com/science/article/pii/S0167839603000967 (visited on 05/16/2018) · Zbl 1069.41507
[43] Shen, Wanqiang; Wang, Guozhao, A basis of multi-degree splines, Comput. Aided Geom. Design, 27, 1, 23-35 (2010), URL: http://www.sciencedirect.com/science/article/pii/S0167839609000946 (visited on 05/16/2018) · Zbl 1209.65022
[44] Toshniwal, Deepesh, Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 316, 1005-1061 (2017), Special Issue on Isogeometric Analysis: Progress and Challenges 316. URL: http://www.sciencedirect.com/science/article/pii/S004578251631533X (visited on 10/31/2018) · Zbl 1439.65016
[45] Martin, Tobias; Cohen, Elaine; Kirby, Mike, Volumetric parameterization and trivariate B-spline fitting using harmonic functions, (Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling. Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling, SPM ’08 (2008), ACM: ACM New York, NY, USA), 269-280, URL: http://doi.acm.org/10.1145/1364901.1364938 (visited on 08/10/2015)
[46] Aigner, M., Swept volume parameterization for isogeometric analysis, (Hancock, Edwina R.; Martin, Ralpha R.; Sabin, Malcolma A., Mathematics of Surfaces XIII. Mathematics of Surfaces XIII, Lecture Notes in Computer Science, vol. 5654 (2009), Springer: Springer Berlin Heidelberg), 19-44, ISBN: 978-3-642-03595-1 978-3-642-03596-8. URL: http://link.springer.com/chapter/10.1007/978-3-642-03596-8_2 (visited on 08/14/2015) · Zbl 1253.65182
[47] Xu, Gang, Parameterization of computational domain in isogeometric analysis: Methods and comparison, Comput. Methods Appl. Mech. Engrg., 200, 23, 2021-2031 (2011), URL: http://www.sciencedirect.com/science/article/pii/S0045782511001101 · Zbl 1228.65232
[48] Xu, Gang, Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications, Comput. Aided Des., 45, 2, 395-404 (2013), Solid and Physical Modeling 2012. URL: http://www.sciencedirect.com/science/article/pii/S0010448512002278 (visited on 06/30/2016)
[49] Wang, Xilu; Qian, Xiaoping, An optimization approach for constructing trivariate B-spline solids, Comput. Aided Des., 46, Supplement C, 179-191 (2014), 2013 SIAM Conference on Geometric and Physical Modeling. URL: http://www.sciencedirect.com/science/article/pii/S001044851300170X
[50] Escobar, J. M., A new approach to solid modeling with trivariate T-splines based on mesh optimization, Comput. Methods Appl. Mech. Engrg., 200, 45, 3210-3222 (2011), URL: http://www.sciencedirect.com/science/article/pii/S0045782511002386 (visited on 08/10/2015) · Zbl 1230.74223
[51] Escobar, J. M., The meccano method for isogeometric solid modeling and applications, Eng. Comput., 30, 3, 331-343 (2012), (ISSN: 0177-0667, 1435-5663). URL: http://link.springer.com/article/10.1007/s00366-012-0300-z (visited on 06/30/2016)
[52] Zhang, Yongjie; Wang, Wenyan; Hughes, Thomasb J. R., Solid T-spline construction from boundary representations for genus-zero geometry, Comput. Methods Appl. Mech. Engrg., 249, 185-197 (2012), Higher Order Finite Element and Isogeometric Methods. URL: http://www.sciencedirect.com/science/article/pii/S0045782512000254 · Zbl 1348.65057
[53] Wang, Wenyan, Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology, Comput. Aided Des., 45, 2, 351-360 (2013), Solid and Physical Modeling 2012. URL: http://www.sciencedirect.com/science/article/pii/S0010448512002230 (visited on 08/10/2015)
[54] Liu, Lei, Volumetric T-spline construction using boolean operations, Eng. Comput., 30, 4, 425-439 (2013), (ISSN: 0177-0667, 1435-5663). URL: http://link.springer.com/article/10.1007/s00366-013-0346-6 (visited on 08/14/2015)
[55] Liu, Lei, Volumetric T-Spline Construction for Isogeometric Analysis - Feature Preservation, Weighted Basis and Arbitrary Degree (2015), Carnegie Mellon University, URL: https://figshare.com/articles/thesis/Volumetric_T-spline_Construction_for_Isogeometric_Analysis_Feature_Preservation_Weighted_Basis_and_Arbitrary_Degree/6724256/1 (visited on 01/04/2022)
[56] Morgenstern, Philipp, Globally structured 3D analysis-suitable T-splines: definition, linear independence and m-graded local refinement, SIAM J. Numer. Anal., 54, 4, 2163-2186 (2016), (ISSN: 0036-1429, 1095-7170). arXiv:1505.05392. URL: http://arxiv.org/abs/1505.05392 (visited on 01/04/2022) · Zbl 1386.65077
[57] Coleman, T.; Pothen, A., The null space problem I. Complexity, SIAM J. Algebr. Discrete Methods, 7, 4, 527-537 (1986), URL: http://epubs.siam.org/doi/abs/10.1137/0607059 (visited on 09/16/2016) · Zbl 0608.65024
[58] Coleman, T.; Pothen, A., The null space problem II. Algorithms, SIAM J. Algebr. Discrete Methods, 8, 4, 544-563 (1987), URL: http://epubs.siam.org/doi/abs/10.1137/0608045 (visited on 09/16/2016) · Zbl 0642.65028
[59] Mazure, Marie-Laurence, On a general new class of quasi Chebyshevian splines, Numer. Algorithms, 58, 3, 399-438 (2011), (ISSN: 1017-1398, 1572-9265). URL: https://link.springer.com/article/10.1007/s11075-011-9461-x (visited on 05/03/2018) · Zbl 1232.41008
[60] Borden, Michaela J., Isogeometric finite element data structures based on bézier extraction of NURBS, Internat. J. Numer. Methods Engrg., 87, 1, 15-47 (2011), URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2968 (visited on 02/04/2019) · Zbl 1242.74097
[61] Scott, Michaela A., Isogeometric finite element data structures based on Bézier extraction of T-splines, Internat. J. Numer. Methods Engrg., 88, 2, 126-156 (2011), URL: http://onlinelibrary.wiley.com/doi/10.1002/nme.3167/abstract · Zbl 1242.65243
[62] Peters, Jörg, Splines and unsorted knot sequences, Comput. Aided Geom. Design, 30, 7, 733-741 (2013), URL: http://www.sciencedirect.com/science/article/pii/S016783961300054X (visited on 11/05/2018) · Zbl 1291.41004
[63] Farouki, Ridaa T., The Bernstein polynomial basis: A centennial retrospective, Comput. Aided Geom. Design, 29, 6, 379-419 (2012), URL: http://www.sciencedirect.com/science/article/pii/S0167839612000192 (visited on 04/13/2015) · Zbl 1252.65039
[64] Hughes, Thomasb J. R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, 706 (2012), Courier Corporation
[65] Campen, Marcel; Zorin, Denis, Similarity maps and field-guided T-splines: A perfect couple, ACM Trans. Graph., 36, 4, 91:1-91:16 (2017), URL: http://doi.acm.org/10.1145/3072959.3073647 (visited on 05/07/2018)
[66] Jüttler, Bert, The dual basis functions for the Bernstein polynomials, Adv. Comput. Math., 8, 4, 345-352 (1998), URL: https://doi.org/10.1023/A:1018912801267 (visited on 02/23/2022) · Zbl 0913.41004
[67] Prautzsch, Hartmut; Boehm, Wolfgang; Paluszny, Marco, Bezier and B-Spline Techniques (2002), Springer-Verlag New York, Inc.: Springer-Verlag New York, Inc. Secaucus, NJ, USA · Zbl 1033.65008
[68] Berkelaar, Michel; Eikland, Kjell; Notebaert, Peter, lp_solve. Version 5.1.0.0 (2004), URL: http://lpsolve.sourceforge.net/5.5/
[69] Li, Xin, On linear independence of T-spline blending functions, Comput. Aided Geom. Des., 29, 1, 63-76 (2012), Geometric Constraints and Reasoning. URL: http://www.sciencedirect.com/science/article/pii/S0167839611000938 (visited on 01/28/2016) · Zbl 1251.65012
[70] Speleers, Hendrik, Algorithm 999: Computation of multi-degree B-splines, ACM Trans. Math. Software, 45, 4, 43:1-43:15 (2019), URL: https://doi.org/10.1145/3321514 (visited on 07/09/2021) · Zbl 1486.65019
[71] Toshniwal, Deepesh, Multi-degree B-splines: Algorithmic computation and properties, Comput. Aided Geom. Design, 76, Article 101792 pp. (2020), URL: https://www.sciencedirect.com/science/article/pii/S0167839619301013 (visited on 07/09/2021) · Zbl 1453.65034
[72] Scott, M. A., Local refinement of analysis-suitable T-splines, Comput. Methods Appl. Mech. Engrg., 213-216, 206-222 (2012), URL: http://www.sciencedirect.com/science/article/pii/S0045782511003689 (visited on 02/04/2019) · Zbl 1243.65030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.