×

Construction of normalized B-splines for a family of smooth spline spaces over Powell-Sabin triangulations. (English) Zbl 1264.41014

Piecewise polynomial splines in two dimensions are considered with given smoothness and polynomial degree, being \(r\) and \(3r-1\), respectively. The piecewise structure is defined on a triangulation and the refinement takes place using the Powell-Sabin split. Among other results, efficient and stable methods for computing Bernstein-Bézier forms are derived, normalised Powell-Sabin B-splines are considered and practical issues are discussed.

MSC:

41A15 Spline approximation
65D07 Numerical computation using splines
65D17 Computer-aided design (modeling of curves and surfaces)
Full Text: DOI

References:

[1] de Boor, C.: B-form basics. In: Farin, G. (ed.) Geometric Modeling: Algorithms and New Trends, pp. 131–148. SIAM, Philadelphia (1987)
[2] de Boor, C.: Multivariate piecewise polynomials. Acta Numer. 2, 65–109 (1993) · Zbl 0796.41009 · doi:10.1017/S0962492900002348
[3] Dierckx, P.: On calculating normalized Powell–Sabin B-splines. Comput. Aided Geom. Des. 15, 61–78 (1997) · Zbl 0894.68152 · doi:10.1016/S0167-8396(97)81785-2
[4] Farin, G.: Triangular Bernstein–Bézier patches. Comput. Aided Geom. Des. 3, 83–127 (1986) · doi:10.1016/0167-8396(86)90016-6
[5] Lai, M., Schumaker, L.: Spline Functions on Triangulations. Encyclopedia of Mathematics and Its Applications, vol. 110. Cambridge University Press, Cambridge (2007)
[6] Maes, J., Bultheel, A.: Stable multiresolution analysis on triangles for surface compression. Electron. Trans. Numer. Anal. 25, 224–258 (2006) · Zbl 1112.65135
[7] Manni, C., Sablonnière, P.: Quadratic spline quasi-interpolants on Powell–Sabin partitions. Adv. Comput. Math. 26, 283–304 (2007) · Zbl 1116.65008 · doi:10.1007/s10444-006-9025-0
[8] Powell, M., Sabin, M.: Piecewise quadratic approximations on triangles. ACM Trans. Math. Softw. 3, 316–325 (1977) · Zbl 0375.41010 · doi:10.1145/355759.355761
[9] Ramshaw, L.: Blossoming: a connect-the-dots approach to splines. Tech. Rep. 19, Digital Systems Research Center (1987)
[10] Sablonnière, P.: Composite finite elements of class C k . J. Comput. Appl. Math. 12&13, 541–550 (1985) · Zbl 0587.41004 · doi:10.1016/0377-0427(85)90047-0
[11] Sablonnière, P.: Error bounds for Hermite interpolation by quadratic splines on an {\(\alpha\)}-triangulation. IMA J. Numer. Anal. 7, 495–508 (1987) · Zbl 0633.41004 · doi:10.1093/imanum/7.4.495
[12] Seidel, H.: An introduction to polar forms. IEEE Comput. Graph. Appl. 13, 38–46 (1993) · doi:10.1109/38.180116
[13] Speleers, H.: A normalized basis for quintic Powell–Sabin splines. Comput. Aided Geom. Des. 27, 438–457 (2010) · Zbl 1210.65027 · doi:10.1016/j.cagd.2010.05.001
[14] Speleers, H.: A normalized basis for reduced Clough–Tocher splines. Comput. Aided Geom. Des. 27, 700–712 (2010) · Zbl 1210.65026 · doi:10.1016/j.cagd.2010.09.003
[15] Speleers, H.: On multivariate polynomials in Bernstein–Bézier form and tensor algebra. J. Comput. Appl. Math. 236, 589–599 (2011) · Zbl 1233.65016 · doi:10.1016/j.cam.2011.04.032
[16] Speleers, H., Dierckx, P., Vandewalle, S.: Numerical solution of partial differential equations with Powell–Sabin splines. J. Comput. Appl. Math. 189, 643–659 (2006) · Zbl 1086.65114 · doi:10.1016/j.cam.2005.03.001
[17] Speleers, H., Dierckx, P., Vandewalle, S.: Quasi-hierarchical Powell–Sabin B-splines. Comput. Aided Geom. Des. 26, 174–191 (2009) · Zbl 1205.65056 · doi:10.1016/j.cagd.2008.05.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.