×

Spectral analysis and spectral symbol of matrices in isogeometric Galerkin methods. (English) Zbl 1359.65252

Summary: A linear full elliptic second-order partial differential equation (PDE), defined on a \( d\)-dimensional domain \( \Omega \), is approximated by the isogeometric Galerkin method based on uniform tensor-product B-splines of degrees \( (p_1,\dots,p_d)\). The considered approximation process leads to a \( d\)-level stiffness matrix, banded in a multilevel sense. This matrix is close to a \( d\)-level Toeplitz structure if the PDE coefficients are constant and the physical domain \( \Omega \) is the hypercube \( (0,1)^d\) without using any geometry map. In such a simplified case, a detailed spectral analysis of the stiffness matrices has already been carried out in a previous work. In this paper, we complete the picture by considering non-constant PDE coefficients and an arbitrary domain \( \Omega \), parameterized with a non-trivial geometry map. We compute and study the spectral symbol of the related stiffness matrices. This symbol describes the asymptotic eigenvalue distribution when the fineness parameters tend to zero (so that the matrix-size tends to infinity). The mathematical tool used for computing the symbol is the theory of generalized locally Toeplitz sequences.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
15B05 Toeplitz, Cauchy, and related matrices
15A18 Eigenvalues, singular values, and eigenvectors

References:

[1] Adams, Robert A.; Fournier, John J. F., Sobolev Spaces, Pure and Applied Mathematics (Amsterdam) 140, xiv+305 pp. (2003), Elsevier/Academic Press, Amsterdam · Zbl 1098.46001
[2] Beckermann, Bernhard; Serra-Capizzano, Stefano, On the asymptotic spectrum of finite element matrix sequences, SIAM J. Numer. Anal., 45, 2, 746-769 (electronic) (2007) · Zbl 1140.65080 · doi:10.1137/05063533X
[3] de Boor, Carl, A Practical Guide to Splines, Applied Mathematical Sciences 27, xviii+346 pp. (2001), Springer-Verlag, New York · Zbl 0987.65015
[4] B{\"o}ttcher, Albrecht; Silbermann, Bernd, Introduction to Large Truncated Toeplitz Matrices, Universitext, xii+258 pp. (1999), Springer-Verlag, New York · Zbl 0916.15012 · doi:10.1007/978-1-4612-1426-7
[5] IgA-book J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA, John Wiley & Sons, 2009. · Zbl 1378.65009
[6] our-SINUM M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, and H. Speleers, Symbol-based multigrid methods for Galerkin B-spline isogeometric analysis, Tech. Report TW650 (2014), Dept. Computer Science, KU Leuven. Available online at https://lirias.kuleuven.be/handle/\linebreak 123456789/461954. · Zbl 1355.65153
[7] Donatelli, Marco; Garoni, Carlo; Manni, Carla; Serra-Capizzano, Stefano; Speleers, Hendrik, Robust and optimal multi-iterative techniques for IgA Galerkin linear systems, Comput. Methods Appl. Mech. Engrg., 284, 230-264 (2015) · Zbl 1388.65176 · doi:10.1016/j.cma.2014.06.001
[8] Donatelli, Marco; Garoni, Carlo; Manni, Carla; Serra-Capizzano, Stefano; Speleers, Hendrik, Robust and optimal multi-iterative techniques for IgA collocation linear systems, Comput. Methods Appl. Mech. Engrg., 284, 1120-1146 (2015) · Zbl 1388.65176 · doi:10.1016/j.cma.2014.11.036
[9] Donatelli, Marco; Garoni, Carlo; Manni, Carla; Serra-Capizzano, Stefano; Speleers, Hendrik, Spectral analysis and spectral symbol of matrices in isogeometric collocation methods, Math. Comp., 85, 300, 1639-1680 (2016) · Zbl 1335.65096 · doi:10.1090/mcom/3027
[10] PhD C. Garoni, Structured matrices coming from PDE approximation theory: spectral analysis, spectral symbol and design of fast iterative solvers, Ph.D. Thesis in Mathematics of Computation, University of Insubria, Como, Italy (2015). Available online at http://hdl.handle.net/\linebreak 10277/568.
[11] Garoni, Carlo; Manni, Carla; Pelosi, Francesca; Serra-Capizzano, Stefano; Speleers, Hendrik, On the spectrum of stiffness matrices arising from isogeometric analysis, Numer. Math., 127, 4, 751-799 (2014) · Zbl 1298.65172 · doi:10.1007/s00211-013-0600-2
[12] GS-REV C. Garoni and S. Serra-Capizzano, The theory of Generalized Locally Toeplitz sequences: A review, an extension, and a few representative applications, Tech. Report 2015-023 (2015), Dept. Information Technology, Uppsala University. Available online at http://www.it.uu.se/\linebreak research/publications/reports/2015-023/. This is the preliminary version of: C. Garoni and S. Serra-Capizzano, Generalized Locally Toeplitz Sequences: Theory and Applications, Springer Monograph (in preparation).
[13] Garoni, Carlo; Serra-Capizzano, Stefano; Sesana, Debora, Tools for determining the asymptotic spectral distribution of non-Hermitian perturbations of Hermitian matrix-sequences and applications, Integral Equations Operator Theory, 81, 2, 213-225 (2015) · Zbl 1337.47045 · doi:10.1007/s00020-014-2157-6
[14] Garoni, Carlo; Serra-Capizzano, Stefano; Sesana, Debora, Spectral analysis and spectral symbol of \(d\)-variate \(\mathbb{Q}_p\) Lagrangian FEM stiffness matrices, SIAM J. Matrix Anal. Appl., 36, 3, 1100-1128 (2015) · Zbl 1321.65173 · doi:10.1137/140976480
[15] Garoni, Carlo; Serra-Capizzano, Stefano; Vassalos, Paris, A general tool for determining the asymptotic spectral distribution of Hermitian matrix-sequences, Oper. Matrices, 9, 3, 549-561 (2015) · Zbl 1329.47019
[16] Golinskii, Leonid; Serra-Capizzano, Stefano, The asymptotic properties of the spectrum of nonsymmetrically perturbed Jacobi matrix sequences, J. Approx. Theory, 144, 1, 84-102 (2007) · Zbl 1111.15013 · doi:10.1016/j.jat.2006.05.002
[17] H{\"o}rmander, Lars, Pseudo-differential operators and non-elliptic boundary problems, Ann. of Math. (2), 83, 129-209 (1966) · Zbl 0132.07402
[18] Quarteroni, Alfio, Numerical Models for Differential Problems, MS&A. Modeling, Simulation and Applications 2, xvi+601 pp. (2009), Springer-Verlag Italia, Milan · Zbl 1170.65326 · doi:10.1007/978-88-470-1071-0
[19] Rudin, Walter, Real and Complex Analysis, xiv+416 pp. (1987), McGraw-Hill Book Co., New York · Zbl 0925.00005
[20] Serra Capizzano, S., Distribution results on the algebra generated by Toeplitz sequences: a finite-dimensional approach, Linear Algebra Appl., 328, 1-3, 121-130 (2001) · Zbl 1003.15008 · doi:10.1016/S0024-3795(00)00311-6
[21] Serra Capizzano, Stefano, Spectral behavior of matrix sequences and discretized boundary value problems, Linear Algebra Appl., 337, 37-78 (2001) · Zbl 1004.15012 · doi:10.1016/S0024-3795(01)00335-4
[22] Serra-Capizzano, S., A note on antireflective boundary conditions and fast deblurring models, SIAM J. Sci. Comput., 25, 4, 1307-1325 (2003/04) · Zbl 1062.65152 · doi:10.1137/S1064827502410244
[23] Serra Capizzano, S., Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations, Linear Algebra Appl., 366, 371-402 (2003) · Zbl 1028.65109 · doi:10.1016/S0024-3795(02)00504-9
[24] Serra-Capizzano, Stefano, The GLT class as a generalized Fourier analysis and applications, Linear Algebra Appl., 419, 1, 180-233 (2006) · Zbl 1109.65032 · doi:10.1016/j.laa.2006.04.012
[25] Serra Capizzano, Stefano; Tablino Possio, Cristina, Analysis of preconditioning strategies for collocation linear systems, Linear Algebra Appl., 369, 41-75 (2003) · Zbl 1030.65037 · doi:10.1016/S0024-3795(02)00719-X
[26] Tilli, P., Locally Toeplitz sequences: spectral properties and applications, Linear Algebra Appl., 278, 1-3, 91-120 (1998) · Zbl 0934.15009 · doi:10.1016/S0024-3795(97)10079-9
[27] Tilli, Paolo, A note on the spectral distribution of Toeplitz matrices, Linear and Multilinear Algebra, 45, 2-3, 147-159 (1998) · Zbl 0951.65033 · doi:10.1080/03081089808818584
[28] Tyrtyshnikov, Evgenij E., A unifying approach to some old and new theorems on distribution and clustering, Linear Algebra Appl., 232, 1-43 (1996) · Zbl 0841.15006 · doi:10.1016/0024-3795(94)00025-5
[29] Tyrtyshnikov, E. E.; Zamarashkin, N. L., Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships, Linear Algebra Appl., 270, 15-27 (1998) · Zbl 0890.15006
[30] FVs H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Second Edition, Pearson Education Limited, 2007. \endbiblist
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.