×

THB-splines: The truncated basis for hierarchical splines. (English) Zbl 1252.65030

The construction of classical hierarchical B-splines can be suitably modified in order to define locally supported basis functions that form a partition of unity. The authors show that this property can be obtained by reducing the support of basis functions defined on coarse grids, according to finer levels in the hierarchy of splines. This truncation not only decreases the overlapping of supports related to basis functions arising from different hierarchical levels, but it also improves the numerical properties of the corresponding hierarchical basis – which is denoted as truncated hierarchical B-spline (THB-spline) basis. Several computed examples illustrate the adaptive approximation behavior obtained by using a refinement algorithm based on THB-splines.

MSC:

65D07 Numerical computation using splines
41A15 Spline approximation

Software:

ISOGAT
Full Text: DOI

References:

[1] Buffa, A.; Cho, D.; Sangalli, G., Linear independence of the T-spline blending functions associated with some particular T-meshes, Comput. Methods Appl. Mech. Engrg., 199, 1437-1445 (2010) · Zbl 1231.65027
[2] Deng, J.; Chen, F.; Li, X.; Hu, C.; Tong, W.; Yang, Z.; Feng, Y., Polynomial splines over hierarchical T-meshes, Graph. Models, 70, 76-86 (2008)
[3] Dörfel, M. R.; Jüttler, B.; Simeon, B., Adaptive isogeometric analysis by local h-refinement with T-splines, Comput. Methods Appl. Mech. Engrg., 199, 264-275 (2010) · Zbl 1227.74125
[4] Forsey, D. R.; Bartels, R. H., Hierarchical B-spline refinement, Comput. Graph., 22, 205-212 (1988)
[5] Forsey, D. R.; Bartels, R. H., Surface fitting with hierarchical splines, ACM Trans. Graph., 14, 134-161 (1995)
[6] Forsey, D. R.; Wong, D., Multiresolution surface reconstruction for hierarchical B-splines, (Davis, W. A.; Booth, K. S.; Fournier, A., Graphics Interface (1998), Canadian Human-Computer Communications Society), 57-64
[7] Giannelli, C., Jüttler, B., 2011. Bases and dimensions of bivariate hierarchical tensor-product splines. Technical report 2011-11, DK-report. Johannes Kepler University Linz; available at https://www.dk-compmath.jku.at/publications/dk-reports/2011-10-04/.; Giannelli, C., Jüttler, B., 2011. Bases and dimensions of bivariate hierarchical tensor-product splines. Technical report 2011-11, DK-report. Johannes Kepler University Linz; available at https://www.dk-compmath.jku.at/publications/dk-reports/2011-10-04/.
[8] Greiner, G.; Hormann, K., Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines, (Méhauté, A. L.; Rabut, C.; Schumaker, L. L., Surface Fitting and Multiresolution Methods. Surface Fitting and Multiresolution Methods, Innovations in Applied Mathematics (1997), Vanderbilt University Press: Vanderbilt University Press Nashville, TN), 163-172 · Zbl 0937.65019
[9] Kleiss, S. K.; Jüttler, B.; Zulehner, W., Enhancing isogeometric analysis by a finite element-based local refinement strategy, Comput. Methods Appl. Mech. Engrg., 213-216, 168-182 (2012) · Zbl 1243.65139
[10] Kong, V. P.; Ong, B. H.; Saw, K. H., Range restricted interpolation using cubic Bézier triangles, (Proceedings of Computer Graphics, Visualization and Computer Vision (2004), Science Press, Union Agency: Science Press, Union Agency Plzen), 125-132
[11] Kraft, R., Adaptive and linearly independent multilevel B-splines, (Le Méhauté, A.; Rabut, C.; Schumaker, L. L., Surface Fitting and Multiresolution Methods (1997), Vanderbilt University Press: Vanderbilt University Press Nashville), 209-218 · Zbl 0937.65014
[12] Kraft, R., 1998. Adaptive und linear unabhängige multilevel B-splines und ihre Anwendungen. PhD thesis, Universität Stuttgart.; Kraft, R., 1998. Adaptive und linear unabhängige multilevel B-splines und ihre Anwendungen. PhD thesis, Universität Stuttgart. · Zbl 0903.68195
[13] Li, X.; Deng, J.; Chen, F., Surface modeling with polynomial splines over hierarchical T-meshes, Visual Comput., 23, 1027-1033 (2007)
[14] Li, X.; Zheng, J.; Sederberg, T. W.; Hughes, T. J.R.; Scott, M. A., On linear independence of T-spline blending functions, Comput. Aided Geom. Design, 29, 63-76 (2012) · Zbl 1251.65012
[15] Nguyen-Thanh, N.; Nguyen-Xuan, H.; Bordas, S. P.A.; Rabczuk, T., Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids, Comput. Methods Appl. Mech. Engrg., 200, 1892-1908 (2011) · Zbl 1228.74091
[16] Schumaker, L. L.; Speleers, H., Nonnegativity preserving macro-element interpolation of scattered data, Comput. Aided Geom. Design, 27, 245-261 (2010) · Zbl 1211.65017
[17] Scott, M. A.; Li, X.; Sederberg, T. W.; Hughes, T. J.R., Local refinement of analysis-suitable T-splines, Comput. Methods Appl. Mech. Engrg., 213-216, 206-222 (2012) · Zbl 1243.65030
[18] Sederberg, T. W.; Cardon, D. L.; Finnigan, G. T.; North, N. S.; Zheng, J.; Lyche, T., T-spline simplification and local refinement, ACM Trans. Graph., 23, 276-283 (2004)
[19] Sederberg, T. W.; Zheng, J.; Bakenov, A.; Nasri, A., T-splines and T-NURCCS, ACM Trans. Graph., 22, 477-484 (2003)
[20] Speleers, H.; Dierckx, P.; Vandewalle, S., Quasi-hierarchical Powell-Sabin B-splines, Comput. Aided Geom. Design, 26, 174-191 (2009) · Zbl 1205.65056
[21] Vuong, A.-V.; Giannelli, C.; Jüttler, B.; Simeon, B., A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200, 3554-3567 (2011) · Zbl 1239.65013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.